
Tunstall,
 von W

erra
 &

 W
olf

Lewis Tunstall,
Leandro von Werra

& Thomas Wolf

Natural Language
Processing with
 Transformers
Building Language Applications
with Hugging Face

Revised

 Edition

Free
Chapters

compliments of

https://hubs.li/Q01vJmWV0

This excerpt contains Chapters 3, 7, and 11. The complete
book is available on the O’Reilly Online Learning Platform

and through other retailers.

Lewis Tunstall, Leandro von Werra, and !omas Wolf
Foreword by Aurélien Géron

Natural Language Processing
with Transformers

Building Language Applications
with Hugging Face

REVISED EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-13679-6

[LSI]

Natural Language Processing with Transformers
by Lewis Tunstall, Leandro von Werra, and Thomas Wolf

Copyright © 2022 Lewis Tunstall, Leandro von Werra, and Thomas Wolf. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Rebecca Novack
Development Editor: Melissa Potter
Production Editor: Katherine Tozer
Copyeditor: Rachel Head
Proofreader: Kim Cofer

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Christa Lanz

February 2022: First Edition
May 2022: Revised Color Edition

Revision History for the Revised Edition
2022-05-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098136796 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Natural Language Processing with
Transformers, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Deepset.ai. See our statement of editorial inde‐
pendence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098136796
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

3. Transformer Anatomy. 1
The Transformer Architecture 1
The Encoder 4

Self-Attention 5
The Feed-Forward Layer 14
Adding Layer Normalization 15
Positional Embeddings 17
Adding a Classification Head 19

The Decoder 20
Meet the Transformers 22

The Transformer Tree of Life 22
The Encoder Branch 23
The Decoder Branch 26
The Encoder-Decoder Branch 27

Conclusion 28

7. Question Answering. 31
Building a Review-Based QA System 32

The Dataset 33
Extracting Answers from Text 39
Using Haystack to Build a QA Pipeline 47

Improving Our QA Pipeline 55
Evaluating the Retriever 55
Evaluating the Reader 62
Domain Adaptation 65
Evaluating the Whole QA Pipeline 69

Going Beyond Extractive QA 71
Conclusion 73

v

11. Future Directions. 75
Scaling Transformers 75

Scaling Laws 77
Challenges with Scaling 79
Attention Please! 81
Sparse Attention 82
Linearized Attention 83

Going Beyond Text 84
Vision 85
Tables 89

Multimodal Transformers 91
Speech-to-Text 91
Vision and Text 94

Where to from Here? 100

vi | Table of Contents

CHAPTER 3

Transformer Anatomy

In Chapter 2, we saw what it takes to fine-tune and evaluate a transformer. Now let’s
take a look at how they work under the hood. In this chapter we’ll explore the main
building blocks of transformer models and how to implement them using PyTorch.
We’ll also provide guidance on how to do the same in TensorFlow. We’ll first focus on
building the attention mechanism, and then add the bits and pieces necessary to
make a transformer encoder work. We’ll also have a brief look at the architectural dif‐
ferences between the encoder and decoder modules. By the end of this chapter you
will be able to implement a simple transformer model yourself!

While a deep technical understanding of the Transformer architecture is generally
not necessary to use Transformers and fine-tune models for your use case, it can
be helpful for comprehending and navigating the limitations of transformers and
using them in new domains.

This chapter also introduces a taxonomy of transformers to help you understand the
zoo of models that have emerged in recent years. Before diving into the code, let’s
start with an overview of the original architecture that kick-started the transformer
revolution.

The Transformer Architecture
As we saw in Chapter 1, the original Transformer is based on the encoder-decoder
architecture that is widely used for tasks like machine translation, where a sequence
of words is translated from one language to another. This architecture consists of two
components:

Encoder
Converts an input sequence of tokens into a sequence of embedding vectors,
often called the hidden state or context

1

Decoder
Uses the encoder’s hidden state to iteratively generate an output sequence of
tokens, one token at a time

As illustrated in Figure 3-1, the encoder and decoder are themselves composed of
several building blocks.

Figure 3-1. Encoder-decoder architecture of the transformer, with the encoder shown in
the upper half of the !gure and the decoder in the lower half

We’ll look at each of the components in detail shortly, but we can already see a few
things in Figure 3-1 that characterize the Transformer architecture:

• The input text is tokenized and converted to token embeddings using the tech‐
niques we encountered in Chapter 2. Since the attention mechanism is not aware
of the relative positions of the tokens, we need a way to inject some information
about token positions into the input to model the sequential nature of text. The
token embeddings are thus combined with positional embeddings that contain
positional information for each token.

• The encoder is composed of a stack of encoder layers or “blocks,” which is analo‐
gous to stacking convolutional layers in computer vision. The same is true of the
decoder, which has its own stack of decoder layers.

• The encoder’s output is fed to each decoder layer, and the decoder then generates
a prediction for the most probable next token in the sequence. The output of this
step is then fed back into the decoder to generate the next token, and so on until
a special end-of-sequence (EOS) token is reached. In the example from
Figure 3-1, imagine the decoder has already predicted “Die” and “Zeit”. Now it

2 | Chapter 3: Transformer Anatomy

1 Y. Liu and M. Lapata, “Text Summarization with Pretrained Encoder”, (2019).

gets these two as an input as well as all the encoder’s outputs to predict the next
token, “fliegt”. In the next step the decoder gets “fliegt” as an additional input. We
repeat the process until the decoder predicts the EOS token or we reached a max‐
imum length.

The Transformer architecture was originally designed for sequence-to-sequence tasks
like machine translation, but both the encoder and decoder blocks were soon adapted
as standalone models. Although there are hundreds of different transformer models,
most of them belong to one of three types:

Encoder-only
These models convert an input sequence of text into a rich numerical representa‐
tion that is well suited for tasks like text classification or named entity recogni‐
tion. BERT and its variants, like RoBERTa and DistilBERT, belong to this class of
architectures. The representation computed for a given token in this architecture
depends both on the left (before the token) and the right (after the token) con‐
texts. This is often called bidirectional attention.

Decoder-only
Given a prompt of text like “Thanks for lunch, I had a…” these models will auto-
complete the sequence by iteratively predicting the most probable next word.
The family of GPT models belong to this class. The representation computed for
a given token in this architecture depends only on the left context. This is often
called causal or autoregressive attention.

Encoder-decoder
These are used for modeling complex mappings from one sequence of text to
another; they’re suitable for machine translation and summarization tasks. In
addition to the Transformer architecture, which as we’ve seen combines an
encoder and a decoder, the BART and T5 models belong to this class.

In reality, the distinction between applications for decoder-only
versus encoder-only architectures is a bit blurry. For example,
decoder-only models like those in the GPT family can be primed
for tasks like translation that are conventionally thought of as
sequence-to-sequence tasks. Similarly, encoder-only models like
BERT can be applied to summarization tasks that are usually asso‐
ciated with encoder-decoder or decoder-only models.1

Now that you have a high-level understanding of the Transformer architecture, let’s
take a closer look at the inner workings of the encoder.

The Transformer Architecture | 3

https://arxiv.org/abs/1908.08345

The Encoder
As we saw earlier, the transformer’s encoder consists of many encoder layers stacked
next to each other. As illustrated in Figure 3-2, each encoder layer receives a sequence
of embeddings and feeds them through the following sublayers:

• A multi-head self-attention layer
• A fully connected feed-forward layer that is applied to each input embedding

The output embeddings of each encoder layer have the same size as the inputs, and
we’ll soon see that the main role of the encoder stack is to “update” the input embed‐
dings to produce representations that encode some contextual information in the
sequence. For example, the word “apple” will be updated to be more “company-like”
and less “fruit-like” if the words “keynote” or “phone” are close to it.

Figure 3-2. Zooming into the encoder layer

Each of these sublayers also uses skip connections and layer normalization, which are
standard tricks to train deep neural networks effectively. But to truly understand what
makes a transformer work, we have to go deeper. Let’s start with the most important
building block: the self-attention layer.

4 | Chapter 3: Transformer Anatomy

2 M.E. Peters et al., “Deep Contextualized Word Representations”, (2017).

Self-Attention
As we discussed in Chapter 1, attention is a mechanism that allows neural networks
to assign a different amount of weight or “attention” to each element in a sequence.
For text sequences, the elements are token embeddings like the ones we encountered
in Chapter 2, where each token is mapped to a vector of some fixed dimension. For
example, in BERT each token is represented as a 768-dimensional vector. The “self ”
part of self-attention refers to the fact that these weights are computed for all hidden
states in the same set—for example, all the hidden states of the encoder. By contrast,
the attention mechanism associated with recurrent models involves computing the
relevance of each encoder hidden state to the decoder hidden state at a given decod‐
ing timestep.

The main idea behind self-attention is that instead of using a fixed embedding for
each token, we can use the whole sequence to compute a weighted average of each
embedding. Another way to formulate this is to say that given a sequence of token
embeddings x1, ..., xn, self-attention produces a sequence of new embeddings x1′ , ..., xn′

where each xi′ is a linear combination of all the xj:

xi′ = ∑
j = 1

n
wjixj

The coefficients wji are called attention weights and are normalized so that ∑ j wji = 1.
To see why averaging the token embeddings might be a good idea, consider what
comes to mind when you see the word “flies”. You might think of annoying insects,
but if you were given more context, like “time flies like an arrow”, then you would
realize that “flies” refers to the verb instead. Similarly, we can create a representation
for “flies” that incorporates this context by combining all the token embeddings in
different proportions, perhaps by assigning a larger weight wji to the token embed‐
dings for “time” and “arrow”. Embeddings that are generated in this way are called
contextualized embeddings and predate the invention of transformers in language
models like ELMo.2 A diagram of the process is shown in Figure 3-3, where we illus‐
trate how, depending on the context, two different representations for “flies” can be
generated via self-attention.

The Encoder | 5

https://arxiv.org/abs/1802.05365

3 A. Vaswani et al., “Attention Is All You Need”, (2017).

Figure 3-3. Diagram showing how self-attention updates raw token embeddings (upper)
into contextualized embeddings (lower) to create representations that incorporate infor‐
mation from the whole sequence

Let’s now take a look at how we can calculate the attention weights.

Scaled dot-product attention
There are several ways to implement a self-attention layer, but the most common one
is scaled dot-product attention, from the paper introducing the Transformer architec‐
ture.3 There are four main steps required to implement this mechanism:

1. Project each token embedding into three vectors called query, key, and value.
2. Compute attention scores. We determine how much the query and key vectors

relate to each other using a similarity function. As the name suggests, the similar‐
ity function for scaled dot-product attention is the dot product, computed effi‐
ciently using matrix multiplication of the embeddings. Queries and keys that are
similar will have a large dot product, while those that don’t share much in com‐
mon will have little to no overlap. The outputs from this step are called the atten‐
tion scores, and for a sequence with n input tokens there is a corresponding n × n
matrix of attention scores.

6 | Chapter 3: Transformer Anatomy

https://arxiv.org/abs/1706.03762

3. Compute attention weights. Dot products can in general produce arbitrarily large
numbers, which can destabilize the training process. To handle this, the attention
scores are first multiplied by a scaling factor to normalize their variance and then
normalized with a softmax to ensure all the column values sum to 1. The result‐
ing n × n matrix now contains all the attention weights, wji.

4. Update the token embeddings. Once the attention weights are computed, we
multiply them by the value vector v1, ..., vn to obtain an updated representation
for embedding xi′ = ∑ j wjivj.

We can visualize how the attention weights are calculated with a nifty library called
BertViz for Jupyter. This library provides several functions that can be used to visual‐
ize different aspects of attention in transformer models. To visualize the attention
weights, we can use the neuron_view module, which traces the computation of the
weights to show how the query and key vectors are combined to produce the final
weight. Since BertViz needs to tap into the attention layers of the model, we’ll instan‐
tiate our BERT checkpoint with the model class from BertViz and then use the
show() function to generate the interactive visualization for a specific encoder layer
and attention head. Note that you need to click the “+” on the left to activate the
attention visualization:

from transformers import AutoTokenizer
from bertviz.transformers_neuron_view import BertModel
from bertviz.neuron_view import show

model_ckpt = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
model = BertModel.from_pretrained(model_ckpt)
text = "time flies like an arrow"
show(model, "bert", tokenizer, text, display_mode="light", layer=0, head=8)

From the visualization, we can see the values of the query and key vectors are repre‐
sented as vertical bands, where the intensity of each band corresponds to the magni‐
tude. The connecting lines are weighted according to the attention between the
tokens, and we can see that the query vector for “flies” has the strongest overlap with
the key vector for “arrow”.

The Encoder | 7

https://oreil.ly/eQK3I

Demystifying Queries, Keys, and Values
The notion of query, key, and value vectors may seem a bit cryptic the first time you
encounter them. Their names were inspired by information retrieval systems, but we
can motivate their meaning with a simple analogy. Imagine that you’re at the super‐
market buying all the ingredients you need for your dinner. You have the dish’s recipe,
and each of the required ingredients can be thought of as a query. As you scan the
shelves, you look at the labels (keys) and check whether they match an ingredient on
your list (similarity function). If you have a match, then you take the item (value)
from the shelf.

In this analogy, you only get one grocery item for every label that matches the ingre‐
dient. Self-attention is a more abstract and “smooth” version of this: every label in the
supermarket matches the ingredient to the extent to which each key matches the
query. So if your list includes a dozen eggs, then you might end up grabbing 10 eggs,
an omelette, and a chicken wing.

Let’s take a look at this process in more detail by implementing the diagram of opera‐
tions to compute scaled dot-product attention, as shown in Figure 3-4.

Figure 3-4. Operations in scaled dot-product attention

We will use PyTorch to implement the Transformer architecture in this chapter, but
the steps in TensorFlow are analogous. We provide a mapping between the most
important functions in the two frameworks in Table 3-1.

Table 3-1. PyTorch and TensorFlow (Keras) classes and methods used in this chapter
PyTorch TensorFlow (Keras) Creates/implements
nn.Linear keras.layers.Dense A dense neural network layer

nn.Module keras.layers.Layer The building blocks of models

nn.Dropout keras.layers.Dropout A dropout layer

nn.LayerNorm keras.layers.LayerNormalization Layer normalization

nn.Embedding keras.layers.Embedding An embedding layer

nn.GELU keras.activations.gelu The Gaussian Error Linear Unit activation function

nn.bmm tf.matmul Batched matrix multiplication

model.forward model.call The model’s forward pass

8 | Chapter 3: Transformer Anatomy

The first thing we need to do is tokenize the text, so let’s use our tokenizer to extract
the input IDs:

inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False)
inputs.input_ids

tensor([[2051, 10029, 2066, 2019, 8612]])

As we saw in Chapter 2, each token in the sentence has been mapped to a unique ID
in the tokenizer’s vocabulary. To keep things simple, we’ve also excluded the [CLS]
and [SEP] tokens by setting add_special_tokens=False. Next, we need to create
some dense embeddings. Dense in this context means that each entry in the embed‐
dings contains a nonzero value. In contrast, the one-hot encodings we saw in Chapter
2 are sparse, since all entries except one are zero. In PyTorch, we can do this by using
a torch.nn.Embedding layer that acts as a lookup table for each input ID:

from torch import nn
from transformers import AutoConfig

config = AutoConfig.from_pretrained(model_ckpt)
token_emb = nn.Embedding(config.vocab_size, config.hidden_size)
token_emb

Embedding(30522, 768)

Here we’ve used the AutoConfig class to load the con!g.json file associated with the
bert-base-uncased checkpoint. In Transformers, every checkpoint is assigned a
configuration file that specifies various hyperparameters like vocab_size and
hidden_size, which in our example shows us that each input ID will be mapped to
one of the 30,522 embedding vectors stored in nn.Embedding, each with a size of 768.
The AutoConfig class also stores additional metadata, such as the label names, which
are used to format the model’s predictions.

Note that the token embeddings at this point are independent of their context. This
means that homonyms (words that have the same spelling but different meaning),
like “flies” in the previous example, have the same representation. The role of the sub‐
sequent attention layers will be to mix these token embeddings to disambiguate and
inform the representation of each token with the content of its context.

Now that we have our lookup table, we can generate the embeddings by feeding in the
input IDs:

inputs_embeds = token_emb(inputs.input_ids)
inputs_embeds.size()

torch.Size([1, 5, 768])

This has given us a tensor of shape [batch_size, seq_len, hidden_dim], just like
we saw in Chapter 2. We’ll postpone the positional encodings, so the next step is to

The Encoder | 9

create the query, key, and value vectors and calculate the attention scores using the
dot product as the similarity function:

import torch
from math import sqrt

query = key = value = inputs_embeds
dim_k = key.size(-1)
scores = torch.bmm(query, key.transpose(1,2)) / sqrt(dim_k)
scores.size()

torch.Size([1, 5, 5])

This has created a 5 × 5 matrix of attention scores per sample in the batch. We’ll see
later that the query, key, and value vectors are generated by applying independent
weight matrices WQ, K, V to the embeddings, but for now we’ve kept them equal for
simplicity. In scaled dot-product attention, the dot products are scaled by the size of
the embedding vectors so that we don’t get too many large numbers during training
that can cause the softmax we will apply next to saturate.

The torch.bmm() function performs a batch matrix-matrix product
that simplifies the computation of the attention scores where the
query and key vectors have the shape [batch_size, seq_len,
hidden_dim]. If we ignored the batch dimension we could calculate
the dot product between each query and key vector by simply
transposing the key tensor to have the shape [hidden_dim,
seq_len] and then using the matrix product to collect all the dot
products in a [seq_len, seq_len] matrix. Since we want to do
this for all sequences in the batch independently, we use
torch.bmm(), which takes two batches of matrices and multiplies
each matrix from the first batch with the corresponding matrix in
the second batch.

Let’s apply the softmax now:
import torch.nn.functional as F

weights = F.softmax(scores, dim=-1)
weights.sum(dim=-1)

tensor([[1., 1., 1., 1., 1.]], grad_fn=<SumBackward1>)

The final step is to multiply the attention weights by the values:
attn_outputs = torch.bmm(weights, value)
attn_outputs.shape

torch.Size([1, 5, 768])

10 | Chapter 3: Transformer Anatomy

And that’s it—we’ve gone through all the steps to implement a simplified form of self-
attention! Notice that the whole process is just two matrix multiplications and a soft‐
max, so you can think of “self-attention” as just a fancy form of averaging.

Let’s wrap these steps into a function that we can use later:
def scaled_dot_product_attention(query, key, value):
 dim_k = query.size(-1)
 scores = torch.bmm(query, key.transpose(1, 2)) / sqrt(dim_k)
 weights = F.softmax(scores, dim=-1)
 return torch.bmm(weights, value)

Our attention mechanism with equal query and key vectors will assign a very large
score to identical words in the context, and in particular to the current word itself: the
dot product of a query with itself is always 1. But in practice, the meaning of a word
will be better informed by complementary words in the context than by identical
words—for example, the meaning of “flies” is better defined by incorporating infor‐
mation from “time” and “arrow” than by another mention of “flies”. How can we pro‐
mote this behavior?

Let’s allow the model to create a different set of vectors for the query, key, and value of
a token by using three different linear projections to project our initial token vector
into three different spaces.

Multi-headed attention
In our simple example, we only used the embeddings “as is” to compute the attention
scores and weights, but that’s far from the whole story. In practice, the self-attention
layer applies three independent linear transformations to each embedding to generate
the query, key, and value vectors. These transformations project the embeddings and
each projection carries its own set of learnable parameters, which allows the self-
attention layer to focus on different semantic aspects of the sequence.

It also turns out to be beneficial to have multiple sets of linear projections, each one
representing a so-called attention head. The resulting multi-head attention layer is
illustrated in Figure 3-5. But why do we need more than one attention head? The rea‐
son is that the softmax of one head tends to focus on mostly one aspect of similarity.
Having several heads allows the model to focus on several aspects at once. For
instance, one head can focus on subject-verb interaction, whereas another finds
nearby adjectives. Obviously we don’t handcraft these relations into the model, and
they are fully learned from the data. If you are familiar with computer vision models
you might see the resemblance to filters in convolutional neural networks, where one
filter can be responsible for detecting faces and another one finds wheels of cars in
images.

The Encoder | 11

Figure 3-5. Multi-head attention

Let’s implement this layer by first coding up a single attention head:
class AttentionHead(nn.Module):
 def __init__(self, embed_dim, head_dim):
 super().__init__()
 self.q = nn.Linear(embed_dim, head_dim)
 self.k = nn.Linear(embed_dim, head_dim)
 self.v = nn.Linear(embed_dim, head_dim)

 def forward(self, hidden_state):
 attn_outputs = scaled_dot_product_attention(
 self.q(hidden_state), self.k(hidden_state), self.v(hidden_state))
 return attn_outputs

Here we’ve initialized three independent linear layers that apply matrix multiplication
to the embedding vectors to produce tensors of shape [batch_size, seq_len,
head_dim], where head_dim is the number of dimensions we are projecting into.
Although head_dim does not have to be smaller than the number of embedding
dimensions of the tokens (embed_dim), in practice it is chosen to be a multiple of
embed_dim so that the computation across each head is constant. For example, BERT
has 12 attention heads, so the dimension of each head is 768/12 = 64.

Now that we have a single attention head, we can concatenate the outputs of each one
to implement the full multi-head attention layer:

class MultiHeadAttention(nn.Module):
 def __init__(self, config):
 super().__init__()
 embed_dim = config.hidden_size
 num_heads = config.num_attention_heads
 head_dim = embed_dim // num_heads
 self.heads = nn.ModuleList(
 [AttentionHead(embed_dim, head_dim) for _ in range(num_heads)]
)
 self.output_linear = nn.Linear(embed_dim, embed_dim)

12 | Chapter 3: Transformer Anatomy

 def forward(self, hidden_state):
 x = torch.cat([h(hidden_state) for h in self.heads], dim=-1)
 x = self.output_linear(x)
 return x

Notice that the concatenated output from the attention heads is also fed through a
final linear layer to produce an output tensor of shape [batch_size, seq_len,
hidden_dim] that is suitable for the feed-forward network downstream. To confirm,
let’s see if the multi-head attention layer produces the expected shape of our inputs.
We pass the configuration we loaded earlier from the pretrained BERT model when
initializing the MultiHeadAttention module. This ensures that we use the same set‐
tings as BERT:

multihead_attn = MultiHeadAttention(config)
attn_output = multihead_attn(inputs_embeds)
attn_output.size()

torch.Size([1, 5, 768])

It works! To wrap up this section on attention, let’s use BertViz again to visualize the
attention for two different uses of the word “flies”. Here we can use the head_view()
function from BertViz by computing the attentions of a pretrained checkpoint and
indicating where the sentence boundary lies:

from bertviz import head_view
from transformers import AutoModel

model = AutoModel.from_pretrained(model_ckpt, output_attentions=True)

sentence_a = "time flies like an arrow"
sentence_b = "fruit flies like a banana"

viz_inputs = tokenizer(sentence_a, sentence_b, return_tensors='pt')
attention = model(**viz_inputs).attentions
sentence_b_start = (viz_inputs.token_type_ids == 0).sum(dim=1)
tokens = tokenizer.convert_ids_to_tokens(viz_inputs.input_ids[0])

head_view(attention, tokens, sentence_b_start, heads=[8])

The Encoder | 13

This visualization shows the attention weights as lines connecting the token whose
embedding is getting updated (left) with every word that is being attended to (right).
The intensity of the lines indicates the strength of the attention weights, with dark
lines representing values close to 1, and faint lines representing values close to 0.

In this example, the input consists of two sentences and the [CLS] and [SEP] tokens
are the special tokens in BERT’s tokenizer that we encountered in Chapter 2. One
thing we can see from the visualization is that the attention weights are strongest
between words that belong to the same sentence, which suggests BERT can tell that it
should attend to words in the same sentence. However, for the word “flies” we can see
that BERT has identified “arrow” as important in the first sentence and “fruit” and
“banana” in the second. These attention weights allow the model to distinguish the
use of “flies” as a verb or noun, depending on the context in which it occurs!

Now that we’ve covered attention, let’s take a look at implementing the missing piece
of the encoder layer: position-wise feed-forward networks.

The Feed-Forward Layer
The feed-forward sublayer in the encoder and decoder is just a simple two-layer fully
connected neural network, but with a twist: instead of processing the whole sequence
of embeddings as a single vector, it processes each embedding independently. For this
reason, this layer is often referred to as a position-wise feed-forward layer. You may
also see it referred to as a one-dimensional convolution with a kernel size of one, typ‐
ically by people with a computer vision background (e.g., the OpenAI GPT codebase
uses this nomenclature). A rule of thumb from the literature is for the hidden size of
the first layer to be four times the size of the embeddings, and a GELU activation
function is most commonly used. This is where most of the capacity and memoriza‐
tion is hypothesized to happen, and it’s the part that is most often scaled when scaling
up the models. We can implement this as a simple nn.Module as follows:

class FeedForward(nn.Module):
 def __init__(self, config):
 super().__init__()
 self.linear_1 = nn.Linear(config.hidden_size, config.intermediate_size)
 self.linear_2 = nn.Linear(config.intermediate_size, config.hidden_size)
 self.gelu = nn.GELU()
 self.dropout = nn.Dropout(config.hidden_dropout_prob)

 def forward(self, x):
 x = self.linear_1(x)
 x = self.gelu(x)
 x = self.linear_2(x)
 x = self.dropout(x)
 return x

14 | Chapter 3: Transformer Anatomy

Note that a feed-forward layer such as nn.Linear is usually applied to a tensor of
shape (batch_size, input_dim), where it acts on each element of the batch dimen‐
sion independently. This is actually true for any dimension except the last one, so
when we pass a tensor of shape (batch_size, seq_len, hidden_dim) the layer is
applied to all token embeddings of the batch and sequence independently, which is
exactly what we want. Let’s test this by passing the attention outputs:

feed_forward = FeedForward(config)
ff_outputs = feed_forward(attn_outputs)
ff_outputs.size()

torch.Size([1, 5, 768])

We now have all the ingredients to create a fully fledged transformer encoder layer!
The only decision left to make is where to place the skip connections and layer nor‐
malization. Let’s take a look at how this affects the model architecture.

Adding Layer Normalization
As mentioned earlier, the Transformer architecture makes use of layer normalization
and skip connections. The former normalizes each input in the batch to have zero
mean and unity variance. Skip connections pass a tensor to the next layer of the
model without processing and add it to the processed tensor. When it comes to plac‐
ing the layer normalization in the encoder or decoder layers of a transformer, there
are two main choices adopted in the literature:

Post layer normalization
This is the arrangement used in the Transformer paper; it places layer normaliza‐
tion in between the skip connections. This arrangement is tricky to train from
scratch as the gradients can diverge. For this reason, you will often see a concept
known as learning rate warm-up, where the learning rate is gradually increased
from a small value to some maximum value during training.

Pre layer normalization
This is the most common arrangement found in the literature; it places layer nor‐
malization within the span of the skip connections. This tends to be much more
stable during training, and it does not usually require any learning rate warm-up.

The difference between the two arrangements is illustrated in Figure 3-6.

The Encoder | 15

Figure 3-6. Di"erent arrangements of layer normalization in a transformer encoder
layer

We’ll use the second arrangement, so we can simply stick together our building
blocks as follows:

class TransformerEncoderLayer(nn.Module):
 def __init__(self, config):
 super().__init__()
 self.layer_norm_1 = nn.LayerNorm(config.hidden_size)
 self.layer_norm_2 = nn.LayerNorm(config.hidden_size)
 self.attention = MultiHeadAttention(config)
 self.feed_forward = FeedForward(config)

 def forward(self, x):
 # Apply layer normalization and then copy input into query, key, value
 hidden_state = self.layer_norm_1(x)
 # Apply attention with a skip connection
 x = x + self.attention(hidden_state)
 # Apply feed-forward layer with a skip connection
 x = x + self.feed_forward(self.layer_norm_2(x))
 return x

Let’s now test this with our input embeddings:
encoder_layer = TransformerEncoderLayer(config)
inputs_embeds.shape, encoder_layer(inputs_embeds).size()

(torch.Size([1, 5, 768]), torch.Size([1, 5, 768]))

We’ve now implemented our very first transformer encoder layer from scratch! How‐
ever, there is a caveat with the way we set up the encoder layers: they are totally

16 | Chapter 3: Transformer Anatomy

4 In fancier terminology, the self-attention and feed-forward layers are said to be permutation equivariant—if
the input is permuted then the corresponding output of the layer is permuted in exactly the same way.

invariant to the position of the tokens. Since the multi-head attention layer is effec‐
tively a fancy weighted sum, the information on token position is lost.4

Luckily, there is an easy trick to incorporate positional information using positional
embeddings. Let’s take a look.

Positional Embeddings
Positional embeddings are based on a simple, yet very effective idea: augment the
token embeddings with a position-dependent pattern of values arranged in a vector.
If the pattern is characteristic for each position, the attention heads and feed-forward
layers in each stack can learn to incorporate positional information into their trans‐
formations.

There are several ways to achieve this, and one of the most popular approaches is to
use a learnable pattern, especially when the pretraining dataset is sufficiently large.
This works exactly the same way as the token embeddings, but using the position
index instead of the token ID as input. With that approach, an efficient way of encod‐
ing the positions of tokens is learned during pretraining.

Let’s create a custom Embeddings module that combines a token embedding layer that
projects the input_ids to a dense hidden state together with the positional embed‐
ding that does the same for position_ids. The resulting embedding is simply the
sum of both embeddings:

class Embeddings(nn.Module):
 def __init__(self, config):
 super().__init__()
 self.token_embeddings = nn.Embedding(config.vocab_size,
 config.hidden_size)
 self.position_embeddings = nn.Embedding(config.max_position_embeddings,
 config.hidden_size)
 self.layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-12)
 self.dropout = nn.Dropout()

 def forward(self, input_ids):
 # Create position IDs for input sequence
 seq_length = input_ids.size(1)
 position_ids = torch.arange(seq_length, dtype=torch.long).unsqueeze(0)
 # Create token and position embeddings
 token_embeddings = self.token_embeddings(input_ids)
 position_embeddings = self.position_embeddings(position_ids)
 # Combine token and position embeddings
 embeddings = token_embeddings + position_embeddings
 embeddings = self.layer_norm(embeddings)

The Encoder | 17

5 By combining the idea of absolute and relative positional representations, rotary position embeddings achieve
excellent results on many tasks. GPT-Neo is an example of a model with rotary position embeddings.

 embeddings = self.dropout(embeddings)
 return embeddings

embedding_layer = Embeddings(config)
embedding_layer(inputs.input_ids).size()

torch.Size([1, 5, 768])

We see that the embedding layer now creates a single, dense embedding for each
token.

While learnable position embeddings are easy to implement and widely used, there
are some alternatives:

Absolute positional representations
Transformer models can use static patterns consisting of modulated sine and
cosine signals to encode the positions of the tokens. This works especially well
when there are not large volumes of data available.

Relative positional representations
Although absolute positions are important, one can argue that when computing
an embedding, the surrounding tokens are most important. Relative positional
representations follow that intuition and encode the relative positions between
tokens. This cannot be set up by just introducing a new relative embedding layer
at the beginning, since the relative embedding changes for each token depending
on where from the sequence we are attending to it. Instead, the attention mecha‐
nism itself is modified with additional terms that take the relative position
between tokens into account. Models such as DeBERTa use such representations.5

Let’s put all of this together now by building the full transformer encoder combining
the embeddings with the encoder layers:

class TransformerEncoder(nn.Module):
 def __init__(self, config):
 super().__init__()
 self.embeddings = Embeddings(config)
 self.layers = nn.ModuleList([TransformerEncoderLayer(config)
 for _ in range(config.num_hidden_layers)])

 def forward(self, x):
 x = self.embeddings(x)
 for layer in self.layers:
 x = layer(x)
 return x

Let’s check the output shapes of the encoder:

18 | Chapter 3: Transformer Anatomy

encoder = TransformerEncoder(config)
encoder(inputs.input_ids).size()

torch.Size([1, 5, 768])

We can see that we get a hidden state for each token in the batch. This output format
makes the architecture very flexible, and we can easily adapt it for various applica‐
tions such as predicting missing tokens in masked language modeling or predicting
the start and end position of an answer in question answering. In the following sec‐
tion we’ll see how we can build a classifier like the one we used in Chapter 2.

Adding a Classi!cation Head
Transformer models are usually divided into a task-independent body and a task-
specific head. We’ll encounter this pattern again in Chapter 4 when we look at the
design pattern of Transformers. What we have built so far is the body, so if we wish
to build a text classifier, we will need to attach a classification head to that body. We
have a hidden state for each token, but we only need to make one prediction. There
are several options to approach this. Traditionally, the first token in such models is
used for the prediction and we can attach a dropout and a linear layer to make a clas‐
sification prediction. The following class extends the existing encoder for sequence
classification:

class TransformerForSequenceClassification(nn.Module):
 def __init__(self, config):
 super().__init__()
 self.encoder = TransformerEncoder(config)
 self.dropout = nn.Dropout(config.hidden_dropout_prob)
 self.classifier = nn.Linear(config.hidden_size, config.num_labels)

 def forward(self, x):
 x = self.encoder(x)[:, 0, :] # select hidden state of [CLS] token
 x = self.dropout(x)
 x = self.classifier(x)
 return x

Before initializing the model we need to define how many classes we would like to
predict:

config.num_labels = 3
encoder_classifier = TransformerForSequenceClassification(config)
encoder_classifier(inputs.input_ids).size()

torch.Size([1, 3])

That is exactly what we have been looking for. For each example in the batch we get
the unnormalized logits for each class in the output. This corresponds to the BERT
model that we used in Chapter 2 to detect emotions in tweets.

The Encoder | 19

6 Note that unlike the self-attention layer, the key and query vectors in encoder-decoder attention can have dif‐
ferent lengths. This is because the encoder and decoder inputs will generally involve sequences of differing
length. As a result, the matrix of attention scores in this layer is rectangular, not square.

This concludes our analysis of the encoder and how we can combine it with a task-
specific head. Let’s now cast our attention (pun intended!) to the decoder.

The Decoder
As illustrated in Figure 3-7, the main difference between the decoder and encoder is
that the decoder has two attention sublayers:

Masked multi-head self-attention layer
Ensures that the tokens we generate at each timestep are only based on the past
outputs and the current token being predicted. Without this, the decoder could
cheat during training by simply copying the target translations; masking the
inputs ensures the task is not trivial.

Encoder-decoder attention layer
Performs multi-head attention over the output key and value vectors of the
encoder stack, with the intermediate representations of the decoder acting as the
queries.6 This way the encoder-decoder attention layer learns how to relate
tokens from two different sequences, such as two different languages. The
decoder has access to the encoder keys and values in each block.

Let’s take a look at the modifications we need to make to include masking in our self-
attention layer, and leave the implementation of the encoder-decoder attention layer
as a homework problem. The trick with masked self-attention is to introduce a mask
matrix with ones on the lower diagonal and zeros above:

seq_len = inputs.input_ids.size(-1)
mask = torch.tril(torch.ones(seq_len, seq_len)).unsqueeze(0)
mask[0]

tensor([[1., 0., 0., 0., 0.],
 [1., 1., 0., 0., 0.],
 [1., 1., 1., 0., 0.],
 [1., 1., 1., 1., 0.],
 [1., 1., 1., 1., 1.]])

Here we’ve used PyTorch’s tril() function to create the lower triangular matrix.
Once we have this mask matrix, we can prevent each attention head from peeking at
future tokens by using Tensor.masked_fill() to replace all the zeros with negative
infinity:

scores.masked_fill(mask == 0, -float("inf"))

20 | Chapter 3: Transformer Anatomy

tensor([[[26.8082, -inf, -inf, -inf, -inf],
 [-0.6981, 26.9043, -inf, -inf, -inf],
 [-2.3190, 1.2928, 27.8710, -inf, -inf],
 [-0.5897, 0.3497, -0.3807, 27.5488, -inf],
 [0.5275, 2.0493, -0.4869, 1.6100, 29.0893]]],
 grad_fn=<MaskedFillBackward0>)

Figure 3-7. Zooming into the transformer decoder layer

By setting the upper values to negative infinity, we guarantee that the attention
weights are all zero once we take the softmax over the scores because e−∞ = 0 (recall
that softmax calculates the normalized exponential). We can easily include this mask‐
ing behavior with a small change to our scaled dot-product attention function that we
implemented earlier in this chapter:

def scaled_dot_product_attention(query, key, value, mask=None):
 dim_k = query.size(-1)
 scores = torch.bmm(query, key.transpose(1, 2)) / sqrt(dim_k)
 if mask is not None:
 scores = scores.masked_fill(mask == 0, float("-inf"))
 weights = F.softmax(scores, dim=-1)
 return weights.bmm(value)

From here it is a simple matter to build up the decoder layer; we point the reader to
the excellent implementation of minGPT by Andrej Karpathy for details.

The Decoder | 21

https://oreil.ly/kwsOP

We’ve given you a lot of technical information here, but now you should have a good
understanding of how every piece of the Transformer architecture works. Before we
move on to building models for tasks more advanced than text classification, let’s
round out the chapter by stepping back a bit and looking at the landscape of different
transformer models and how they relate to each other.

Demystifying Encoder-Decoder Attention
Let’s see if we can shed some light on the mysteries of encoder-decoder attention.
Imagine you (the decoder) are in class taking an exam. Your task is to predict the next
word based on the previous words (decoder inputs), which sounds simple but is
incredibly hard (try it yourself and predict the next words in a passage of this book).
Fortunately, your neighbor (the encoder) has the full text. Unfortunately, they’re a
foreign exchange student and the text is in their mother tongue. Cunning students
that you are, you figure out a way to cheat anyway. You draw a little cartoon illustrat‐
ing the text you already have (the query) and give it to your neighbor. They try to
figure out which passage matches that description (the key), draw a cartoon describ‐
ing the word following that passage (the value), and pass that back to you. With this
system in place, you ace the exam.

Meet the Transformers
As you’ve seen in this chapter, there are three main architectures for transformer
models: encoders, decoders, and encoder-decoders. The initial success of the early
transformer models triggered a Cambrian explosion in model development as
researchers built models on various datasets of different size and nature, used new
pretraining objectives, and tweaked the architecture to further improve performance.
Although the zoo of models is still growing fast, they can still be divided into these
three categories.

In this section we’ll provide a brief overview of the most important transformer mod‐
els in each class. Let’s start by taking a look at the transformer family tree.

The Transformer Tree of Life
Over time, each of the three main architectures has undergone an evolution of its
own. This is illustrated in Figure 3-8, which shows a few of the most prominent mod‐
els and their descendants.

22 | Chapter 3: Transformer Anatomy

7 A. Wang et al., “GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understand‐
ing”, (2018).

Figure 3-8. An overview of some of the most prominent transformer architectures

With over 50 different architectures included in Transformers, this family tree by
no means provides a complete overview of all the ones that exist: it simply highlights
a few of the architectural milestones. We’ve covered the original Transformer archi‐
tecture in depth in this chapter, so let’s take a closer look at some of the key descend‐
ants, starting with the encoder branch.

The Encoder Branch
The first encoder-only model based on the Transformer architecture was BERT. At
the time it was published, it outperformed all the state-of-the-art models on the pop‐
ular GLUE benchmark,7 which measures natural language understanding (NLU)
across several tasks of varying difficulty. Subsequently, the pretraining objective and
the architecture of BERT have been adapted to further improve performance.
Encoder-only models still dominate research and industry on NLU tasks such as text

Meet the Transformers | 23

https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461

8 J. Devlin et al., “BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding”,
(2018).

9 V. Sanh et al., “DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter”, (2019).
10 Y. Liu et al., “RoBERTa: A Robustly Optimized BERT Pretraining Approach”, (2019).
11 G. Lample, and A. Conneau, “Cross-Lingual Language Model Pretraining”, (2019).
12 A. Conneau et al., “Unsupervised Cross-Lingual Representation Learning at Scale”, (2019).

classification, named entity recognition, and question answering. Let’s have a brief
look at the BERT model and its variants:

BERT
BERT is pretrained with the two objectives of predicting masked tokens in texts
and determining if one text passage is likely to follow another.8 The former task is
called masked language modeling (MLM) and the latter next sentence prediction
(NSP).

DistilBERT
Although BERT delivers great results, it’s size can make it tricky to deploy in
environments where low latencies are required. By using a technique known as
knowledge distillation during pretraining, DistilBERT achieves 97% of BERT’s
performance while using 40% less memory and being 60% faster.9 You can find
more details on knowledge distillation in Chapter 8.

RoBERTa
A study following the release of BERT revealed that its performance can be fur‐
ther improved by modifying the pretraining scheme. RoBERTa is trained longer,
on larger batches with more training data, and it drops the NSP task.10 Together,
these changes significantly improve its performance compared to the original
BERT model.

XLM
Several pretraining objectives for building multilingual models were explored in
the work on the cross-lingual language model (XLM),11 including the autoregres‐
sive language modeling from GPT-like models and MLM from BERT. In addi‐
tion, the authors of the paper on XLM pretraining introduced translation
language modeling (TLM), which is an extension of MLM to multiple language
inputs. Experimenting with these pretraining tasks, they achieved state-of-the-art
results on several multilingual NLU benchmarks as well as on translation tasks.

XLM-RoBERTa
Following the work of XLM and RoBERTa, the XLM-RoBERTa or XLM-R model
takes multilingual pretraining one step further by massively upscaling the
training data.12 Using the Common Crawl corpus, its developers created a dataset
with 2.5 terabytes of text; they then trained an encoder with MLM on this

24 | Chapter 3: Transformer Anatomy

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1901.07291
https://arxiv.org/abs/1911.02116
https://commoncrawl.org

13 Z. Lan et al., “ALBERT: A Lite BERT for Self-Supervised Learning of Language Representations”, (2019).
14 K. Clark et al., “ELECTRA: Pre-Training Text Encoders as Discriminators Rather Than Generators”, (2020).
15 P. He et al., “DeBERTa: Decoding-Enhanced BERT with Disentangled Attention”, (2020).

dataset. Since the dataset only contains data without parallel texts (i.e., transla‐
tions), the TLM objective of XLM was dropped. This approach beats XLM and
multilingual BERT variants by a large margin, especially on low-resource
languages.

ALBERT
The ALBERT model introduced three changes to make the encoder architecture
more efficient.13 First, it decouples the token embedding dimension from the hid‐
den dimension, thus allowing the embedding dimension to be small and thereby
saving parameters, especially when the vocabulary gets large. Second, all layers
share the same parameters, which decreases the number of effective parameters
even further. Finally, the NSP objective is replaced with a sentence-ordering pre‐
diction: the model needs to predict whether or not the order of two consecutive
sentences was swapped rather than predicting if they belong together at all. These
changes make it possible to train even larger models with fewer parameters and
reach superior performance on NLU tasks.

ELECTRA
One limitation of the standard MLM pretraining objective is that at each training
step only the representations of the masked tokens are updated, while the other
input tokens are not. To address this issue, ELECTRA uses a two-model
approach:14 the first model (which is typically small) works like a standard
masked language model and predicts masked tokens. The second model, called
the discriminator, is then tasked to predict which of the tokens in the first model’s
output were originally masked. Therefore, the discriminator needs to make a
binary classification for every token, which makes training 30 times more effi‐
cient. For downstream tasks the discriminator is fine-tuned like a standard BERT
model.

DeBERTa
The DeBERTa model introduces two architectural changes.15 First, each token is
represented as two vectors: one for the content, the other for relative position. By
disentangling the tokens’ content from their relative positions, the self-attention
layers can better model the dependency of nearby token pairs. On the other
hand, the absolute position of a word is also important, especially for decoding.
For this reason, an absolute position embedding is added just before the softmax
layer of the token decoding head. DeBERTa is the first model (as an ensemble) to

Meet the Transformers | 25

https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/2003.10555
https://arxiv.org/abs/2006.03654

16 A. Wang et al., “SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems”,
(2019).

17 A. Radford et al., “Improving Language Understanding by Generative Pre-Training”, OpenAI (2018).
18 A. Radford et al., “Language Models Are Unsupervised Multitask Learners”, OpenAI (2019).
19 N.S. Keskar et al., “CTRL: A Conditional Transformer Language Model for Controllable Generation”, (2019).

beat the human baseline on the SuperGLUE benchmark,16 a more difficult ver‐
sion of GLUE consisting of several subtasks used to measure NLU performance.

Now that we’ve highlighted some of the major encoder-only architectures, let’s take a
look at the decoder-only models.

The Decoder Branch
The progress on transformer decoder models has been spearheaded to a large extent
by OpenAI. These models are exceptionally good at predicting the next word in a
sequence and are thus mostly used for text generation tasks (see Chapter 5 for more
details). Their progress has been fueled by using larger datasets and scaling the lan‐
guage models to larger and larger sizes. Let’s have a look at the evolution of these fas‐
cinating generation models:

GPT
The introduction of GPT combined two key ideas in NLP:17 the novel and effi‐
cient transformer decoder architecture, and transfer learning. In that setup, the
model was pretrained by predicting the next word based on the previous ones.
The model was trained on the BookCorpus and achieved great results on down‐
stream tasks such as classification.

GPT-2
Inspired by the success of the simple and scalable pretraining approach, the origi‐
nal model and training set were upscaled to produce GPT-2.18 This model is able
to produce long sequences of coherent text. Due to concerns about possible mis‐
use, the model was released in a staged fashion, with smaller models being pub‐
lished first and the full model later.

CTRL
Models like GPT-2 can continue an input sequence (also called a prompt). How‐
ever, the user has little control over the style of the generated sequence. The
Conditional Transformer Language (CTRL) model addresses this issue by adding
“control tokens” at the beginning of the sequence.19 These allow the style of the
generated text to be controlled, which allows for diverse generation.

26 | Chapter 3: Transformer Anatomy

https://arxiv.org/abs/1905.00537
https://openai.com/blog/language-unsupervised
https://openai.com/blog/better-language-models
https://arxiv.org/abs/1909.05858

20 J. Kaplan et al., “Scaling Laws for Neural Language Models”, (2020).
21 T. Brown et al., “Language Models Are Few-Shot Learners”, (2020).
22 S. Black et al., “GPT-Neo: Large Scale Autoregressive Language Modeling with Mesh-TensorFlow”, (2021); B.

Wang and A. Komatsuzaki, “GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model”, (2021).
23 C. Raffel et al., “Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer”, (2019).

GPT-3
Following the success of scaling GPT up to GPT-2, a thorough analysis on the
behavior of language models at different scales revealed that there are simple
power laws that govern the relation between compute, dataset size, model size,
and the performance of a language model.20 Inspired by these insights, GPT-2
was upscaled by a factor of 100 to yield GPT-3,21 with 175 billion parameters.
Besides being able to generate impressively realistic text passages, the model also
exhibits few-shot learning capabilities: with a few examples of a novel task such
as translating text to code, the model is able to accomplish the task on new exam‐
ples. OpenAI has not open-sourced this model, but provides an interface through
the OpenAI API.

GPT-Neo/GPT-J-6B
GPT-Neo and GPT-J-6B are GPT-like models that were trained by EleutherAI, a
collective of researchers who aim to re-create and release GPT-3 scale models.22

The current models are smaller variants of the full 175-billion-parameter model,
with 1.3, 2.7, and 6 billion parameters, and are competitive with the smaller
GPT-3 models OpenAI offers.

The final branch in the transformers tree of life is the encoder-decoder models. Let’s
take a look.

The Encoder-Decoder Branch
Although it has become common to build models using a single encoder or decoder
stack, there are several encoder-decoder variants of the Transformer architecture that
have novel applications across both NLU and NLG domains:

T5
The T5 model unifies all NLU and NLG tasks by converting them into text-to-
text tasks.23 All tasks are framed as sequence-to-sequence tasks, where adopting
an encoder-decoder architecture is natural. For text classification problems, for
example, this means that the text is used as the encoder input and the decoder
has to generate the label as normal text instead of a class. We will look at this in
more detail in Chapter 6. The T5 architecture uses the original Transformer
architecture. Using the large crawled C4 dataset, the model is pretrained with
masked language modeling as well as the SuperGLUE tasks by translating all of

Meet the Transformers | 27

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2005.14165
https://doi.org/10.5281/zenodo.5297715
https://github.com/kingoflolz/mesh-transformer-jax
https://arxiv.org/abs/1910.10683
https://oreil.ly/SEGRW
https://eleuther.ai

24 M. Lewis et al., “BART: Denoising Sequence-to-Sequence Pre-Training for Natural Language Generation,
Translation, and Comprehension”, (2019).

25 A. Fan et al., “Beyond English-Centric Multilingual Machine Translation”, (2020).
26 M. Zaheer et al., “Big Bird: Transformers for Longer Sequences”, (2020).

them to text-to-text tasks. The largest model with 11 billion parameters yielded
state-of-the-art results on several benchmarks.

BART
BART combines the pretraining procedures of BERT and GPT within the
encoder-decoder architecture.24 The input sequences undergo one of several pos‐
sible transformations, from simple masking to sentence permutation, token dele‐
tion, and document rotation. These modified inputs are passed through the
encoder, and the decoder has to reconstruct the original texts. This makes the
model more flexible as it is possible to use it for NLU as well as NLG tasks, and it
achieves state-of-the-art-performance on both.

M2M-100
Conventionally a translation model is built for one language pair and translation
direction. Naturally, this does not scale to many languages, and in addition there
might be shared knowledge between language pairs that could be leveraged for
translation between rare languages. M2M-100 is the first translation model that
can translate between any of 100 languages.25 This allows for high-quality transla‐
tions between rare and underrepresented languages. The model uses prefix
tokens (similar to the special [CLS] token) to indicate the source and target
language.

BigBird
One main limitation of transformer models is the maximum context size, due to
the quadratic memory requirements of the attention mechanism. BigBird
addresses this issue by using a sparse form of attention that scales linearly.26 This
allows for the drastic scaling of contexts from 512 tokens in most BERT models
to 4,096 in BigBird. This is especially useful in cases where long dependencies
need to be conserved, such as in text summarization.

Pretrained checkpoints of all models that we have seen in this section are available on
the Hugging Face Hub and can be fine-tuned to your use case with Transformers,
as described in the previous chapter.

Conclusion
In this chapter we started at the heart of the Transformer architecture with a deep
dive into self-attention, and we subsequently added all the necessary parts to build a

28 | Chapter 3: Transformer Anatomy

https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2007.14062
https://oreil.ly/EIOrN

transformer encoder model. We added embedding layers for tokens and positional
information, we built in a feed-forward layer to complement the attention heads, and
finally we added a classification head to the model body to make predictions. We also
had a look at the decoder side of the Transformer architecture, and concluded the
chapter with an overview of the most important model architectures.

Now that you have a better understanding of the underlying principles, let’s go
beyond simple classification and build a multilingual named entity recognition
model.

Conclusion | 29

CHAPTER 7

Question Answering

Whether you’re a researcher, analyst, or data scientist, chances are that at some point
you’ve needed to wade through oceans of documents to find the information you’re
looking for. To make matters worse, you’re constantly reminded by Google and Bing
that there exist better ways to search! For instance, if we search for “When did Marie
Curie win her first Nobel Prize?” on Google, we immediately get the correct answer
of “1903,” as illustrated in Figure 7-1.

Figure 7-1. A Google search query and corresponding answer snippet

31

1 Although, in this particular case, everyone agrees that Drop C is the best guitar tuning.

In this example, Google first retrieved around 319,000 documents that were relevant
to the query, and then performed an additional processing step to extract the answer
snippet with the corresponding passage and web page. It’s not hard to see why these
answer snippets are useful. For example, if we search for a trickier question like
“Which guitar tuning is the best?” Google doesn’t provide an answer, and instead we
have to click on one of the web pages returned by the search engine to find it
ourselves.1

The general approach behind this technology is called question answering (QA).
There are many flavors of QA, but the most common is extractive QA, which involves
questions whose answer can be identified as a span of text in a document, where the
document might be a web page, legal contract, or news article. The two-stage process
of first retrieving relevant documents and then extracting answers from them is also
the basis for many modern QA systems, including semantic search engines, intelli‐
gent assistants, and automated information extractors. In this chapter, we’ll apply this
process to tackle a common problem facing ecommerce websites: helping consumers
answer specific queries to evaluate a product. We’ll see that customer reviews can be
used as a rich and challenging source of information for QA, and along the way we’ll
learn how transformers act as powerful reading comprehension models that can
extract meaning from text. Let’s begin by fleshing out the use case.

This chapter focuses on extractive QA, but other forms of QA may
be more suitable for your use case. For example, community QA
involves gathering question-answer pairs that are generated by
users on forums like Stack Overflow, and then using semantic sim‐
ilarity search to find the closest matching answer to a new ques‐
tion. There is also long-form QA, which aims to generate complex
paragraph-length answers to open-ended questions like “Why is
the sky blue?” Remarkably, it is also possible to do QA over tables,
and transformer models like TAPAS can even perform aggrega‐
tions to produce the final answer!

Building a Review-Based QA System
If you’ve ever purchased a product online, you probably relied on customer reviews
to help inform your decision. These reviews can often help answer specific questions
like “Does this guitar come with a strap?” or “Can I use this camera at night?” that
may be hard to answer from the product description alone. However, popular
products can have hundreds to thousands of reviews, so it can be a major drag to find
one that is relevant. One alternative is to post your question on the community QA

32 | Chapter 7: Question Answering

https://stackoverflow.com
https://oreil.ly/vVPWO

2 J. Bjerva et al., “SubjQA: A Dataset for Subjectivity and Review Comprehension”, (2020).
3 As we’ll soon see, there are also unanswerable questions that are designed to produce more robust models.

platforms provided by websites like Amazon, but it usually takes days to get an
answer (if you get one at all). Wouldn’t it be nice if we could get an immediate answer,
like in the Google example from Figure 7-1? Let’s see if we can do this using
transformers!

The Dataset
To build our QA system we’ll use the SubjQA dataset,2 which consists of more than
10,000 customer reviews in English about products and services in six domains: Trip‐
Advisor, Restaurants, Movies, Books, Electronics, and Grocery. As illustrated in
Figure 7-2, each review is associated with a question that can be answered using one
or more sentences from the review.3

Figure 7-2. A question about a product and the corresponding review (the answer span
is underlined)

The interesting aspect of this dataset is that most of the questions and answers are
subjective; that is, they depend on the personal experience of the users. The example
in Figure 7-2 shows why this feature makes the task potentially more difficult than

Building a Review-Based QA System | 33

https://arxiv.org/abs/2004.14283

finding answers to factual questions like “What is the currency of the United King‐
dom?” First, the query is about “poor quality,” which is subjective and depends on the
user’s definition of quality. Second, important parts of the query do not appear in the
review at all, which means it cannot be answered with shortcuts like keyword search
or paraphrasing the input question. These features make SubjQA a realistic dataset to
benchmark our review-based QA models on, since user-generated content like that
shown in Figure 7-2 resembles what we might encounter in the wild.

QA systems are usually categorized by the domain of data that they
have access to when responding to a query. Closed-domain QA
deals with questions about a narrow topic (e.g., a single product
category), while open-domain QA deals with questions about
almost anything (e.g., Amazon’s whole product catalog). In general,
closed-domain QA involves searching through fewer documents
than the open-domain case.

To get started, let’s download the dataset from the Hugging Face Hub. As we did in
Chapter 4, we can use the get_dataset_config_names() function to find out which
subsets are available:

from datasets import get_dataset_config_names

domains = get_dataset_config_names("subjqa")
domains

['books', 'electronics', 'grocery', 'movies', 'restaurants', 'tripadvisor']

For our use case, we’ll focus on building a QA system for the Electronics domain. To
download the electronics subset, we just need to pass this value to the name argu‐
ment of the load_dataset() function:

from datasets import load_dataset

subjqa = load_dataset("subjqa", name="electronics")

Like other question answering datasets on the Hub, SubjQA stores the answers to
each question as a nested dictionary. For example, if we inspect one of the rows in the
answers column:

print(subjqa["train"]["answers"][1])

{'text': ['Bass is weak as expected', 'Bass is weak as expected, even with EQ
adjusted up'], 'answer_start': [1302, 1302], 'answer_subj_level': [1, 1],
'ans_subj_score': [0.5083333253860474, 0.5083333253860474], 'is_ans_subjective':
[True, True]}

we can see that the answers are stored in a text field, while the starting character
indices are provided in answer_start. To explore the dataset more easily, we’ll flatten

34 | Chapter 7: Question Answering

https://oreil.ly/iO0s5

4 D. Hendrycks et al., “CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review”, (2021).

these nested columns with the flatten() method and convert each split to a Pandas
DataFrame as follows:

import pandas as pd

dfs = {split: dset.to_pandas() for split, dset in subjqa.flatten().items()}

for split, df in dfs.items():
 print(f"Number of questions in {split}: {df['id'].nunique()}")

Number of questions in train: 1295
Number of questions in test: 358
Number of questions in validation: 255

Notice that the dataset is relatively small, with only 1,908 examples in total. This sim‐
ulates a real-world scenario, since getting domain experts to label extractive QA data‐
sets is labor-intensive and expensive. For example, the CUAD dataset for extractive
QA on legal contracts is estimated to have a value of $2 million to account for the
legal expertise needed to annotate its 13,000 examples!4

There are quite a few columns in the SubjQA dataset, but the most interesting ones
for building our QA system are shown in Table 7-1.

Table 7-1. Column names and their descriptions from the SubjQA dataset
Column name Description
title The Amazon Standard Identi!cation Number (ASIN) associated with each product

question The question

answers.answer_text The span of text in the review labeled by the annotator

answers.answer_start The start character index of the answer span

context The customer review

Let’s focus on these columns and take a look at a few of the training examples. We can
use the sample() method to select a random sample:

qa_cols = ["title", "question", "answers.text",
 "answers.answer_start", "context"]
sample_df = dfs["train"][qa_cols].sample(2, random_state=7)
sample_df

Building a Review-Based QA System | 35

https://arxiv.org/abs/2103.06268

title question answers.text answers.answer_start context
B005DKZTMG Does the

keyboard
lightweight?

[this keyboard
is compact]

[215] I really like this keyboard. I give it 4 stars
because it doesn’t have a CAPS LOCK key so I
never know if my caps are on. But for the price,
it really su"ces as a wireless keyboard. I have
very large hands and this keyboard is compact,
but I have no complaints.

B00AAIPT76 How is the
battery?

[] [] I bought this after the !rst spare gopro battery I
bought wouldn’t hold a charge. I have very
realistic expectations of this sort of product, I am
skeptical of amazing stories of charge time and
battery life but I do expect the batteries to hold
a charge for a couple of weeks at least and for
the charger to work like a charger. In this I was
not disappointed. I am a river rafter and found
that the gopro burns through power in a hurry
so this purchase solved that issue. the batteries
held a charge, on shorter trips the extra two
batteries were enough and on longer trips I
could use my friends JOOS Orange to recharge
them.I just bought a newtrent xtreme powerpak
and expect to be able to charge these with that
so I will not run out of power again.

From these examples we can make a few observations. First, the questions are not
grammatically correct, which is quite common in the FAQ sections of ecommerce
websites. Second, an empty answers.text entry denotes “unanswerable” questions
whose answer cannot be found in the review. Finally, we can use the start index and
length of the answer span to slice out the span of text in the review that corresponds
to the answer:

start_idx = sample_df["answers.answer_start"].iloc[0][0]
end_idx = start_idx + len(sample_df["answers.text"].iloc[0][0])
sample_df["context"].iloc[0][start_idx:end_idx]

'this keyboard is compact'

Next, let’s get a feel for what types of questions are in the training set by counting the
questions that begin with a few common starting words:

counts = {}
question_types = ["What", "How", "Is", "Does", "Do", "Was", "Where", "Why"]

for q in question_types:
 counts[q] = dfs["train"]["question"].str.startswith(q).value_counts()[True]

pd.Series(counts).sort_values().plot.barh()
plt.title("Frequency of Question Types")
plt.show()

36 | Chapter 7: Question Answering

5 P. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension of Text”, (2016).

We can see that questions beginning with “How”, “What”, and “Is” are the most com‐
mon ones, so let’s have a look at some examples:

for question_type in ["How", "What", "Is"]:
 for question in (
 dfs["train"][dfs["train"].question.str.startswith(question_type)]
 .sample(n=3, random_state=42)['question']):
 print(question)

How is the camera?
How do you like the control?
How fast is the charger?
What is direction?
What is the quality of the construction of the bag?
What is your impression of the product?
Is this how zoom works?
Is sound clear?
Is it a wireless keyboard?

The Stanford Question Answering Dataset
The (question, review, [answer sentences]) format of SubjQA is commonly used in
extractive QA datasets, and was pioneered in the Stanford Question Answering Data‐
set (SQuAD).5 This is a famous dataset that is often used to test the ability of
machines to read a passage of text and answer questions about it. The dataset was cre‐
ated by sampling several hundred English articles from Wikipedia, partitioning each
article into paragraphs, and then asking crowdworkers to generate a set of questions

Building a Review-Based QA System | 37

https://arxiv.org/abs/1606.05250

6 P. Rajpurkar, R. Jia, and P. Liang, “Know What You Don’t Know: Unanswerable Questions for SQuAD”,
(2018).

7 T. Kwiatkowski et al., “Natural Questions: A Benchmark for Question Answering Research,” Transactions of
the Association for Computational Linguistics 7 (March 2019): 452–466, http://dx.doi.org/10.1162/
tacl_a_00276.

and answers for each paragraph. In the first version of SQuAD, each answer to a
question was guaranteed to exist in the corresponding passage. But it wasn’t long
before sequence models started performing better than humans at extracting the cor‐
rect span of text with the answer. To make the task more difficult, SQuAD 2.0 was
created by augmenting SQuAD 1.1 with a set of adversarial questions that are relevant
to a given passage but cannot be answered from the text alone.6 The state of the art as
of this book’s writing is shown in Figure 7-3, with most models since 2019 surpassing
human performance.

Figure 7-3. Progress on the SQuAD 2.0 benchmark (image from Papers with Code)

However, this superhuman performance does not appear to reflect genuine reading
comprehension, since answers to the “unanswerable” questions can usually be identi‐
fied through patterns in the passages like antonyms. To address these problems Goo‐
gle released the Natural Questions (NQ) dataset,7 which involves fact-seeking
questions obtained from Google Search users. The answers in NQ are much longer
than in SQuAD and present a more challenging benchmark.

Now that we’ve explored our dataset a bit, let’s dive into understanding how trans‐
formers can extract answers from text.

38 | Chapter 7: Question Answering

https://arxiv.org/abs/1806.03822
http://dx.doi.org/10.1162/tacl_a_00276
http://dx.doi.org/10.1162/tacl_a_00276

Extracting Answers from Text
The first thing we’ll need for our QA system is to find a way to identify a potential
answer as a span of text in a customer review. For example, if a we have a question
like “Is it waterproof?” and the review passage is “This watch is waterproof at 30m
depth”, then the model should output “waterproof at 30m”. To do this we’ll need to
understand how to:

• Frame the supervised learning problem.
• Tokenize and encode text for QA tasks.
• Deal with long passages that exceed a model’s maximum context size.

Let’s start by taking a look at how to frame the problem.

Span classi!cation
The most common way to extract answers from text is by framing the problem as a
span classi!cation task, where the start and end tokens of an answer span act as the
labels that a model needs to predict. This process is illustrated in Figure 7-4.

Figure 7-4. #e span classi!cation head for QA tasks

Since our training set is relatively small, with only 1,295 examples, a good strategy is
to start with a language model that has already been fine-tuned on a large-scale QA
dataset like SQuAD. In general, these models have strong reading comprehension
capabilities and serve as a good baseline upon which to build a more accurate system.
This is a somewhat different approach to that taken in previous chapters, where we

Building a Review-Based QA System | 39

typically started with a pretrained model and fine-tuned the task-specific head our‐
selves. For example, in Chapter 2, we had to fine-tune the classification head because
the number of classes was tied to the dataset at hand. For extractive QA, we can
actually start with a fine-tuned model since the structure of the labels remains the
same across datasets.

You can find a list of extractive QA models by navigating to the Hugging Face Hub
and searching for “squad” on the Models tab (Figure 7-5).

Figure 7-5. A selection of extractive QA models on the Hugging Face Hub

As you can see, at the time of writing, there are more than 350 QA models to choose
from—so which one should you pick? In general, the answer depends on various fac‐
tors like whether your corpus is mono- or multilingual and the constraints of run‐
ning the model in a production environment. Table 7-2 lists a few models that
provide a good foundation to build on.

Table 7-2. Baseline transformer models that are !ne-tuned on SQuAD 2.0
Transformer Description Number of

parameters
F1-score on
SQuAD 2.0

MiniLM A distilled version of BERT-base that preserves 99% of the performance
while being twice as fast

66M 79.5

RoBERTa-base RoBERTa models have better performance than their BERT counterparts
and can be !ne-tuned on most QA datasets using a single GPU

125M 83.0

ALBERT-XXL State-of-the-art performance on SQuAD 2.0, but computationally
intensive and di"cult to deploy

235M 88.1

XLM-RoBERTa-
large

Multilingual model for 100 languages with strong zero-shot
performance

570M 83.8

40 | Chapter 7: Question Answering

https://oreil.ly/dzCsC

8 W. Wang et al., “MINILM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained
Transformers”, (2020).

9 Note that the token_type_ids are not present in all transformer models. In the case of BERT-like models
such as MiniLM, the token_type_ids are also used during pretraining to incorporate the next sentence
prediction task.

For the purposes of this chapter, we’ll use a fine-tuned MiniLM model since it is fast
to train and will allow us to quickly iterate on the techniques that we’ll be exploring.8

As usual, the first thing we need is a tokenizer to encode our texts, so let’s take a look
at how this works for QA tasks.

Tokenizing text for QA
To encode our texts, we’ll load the MiniLM model checkpoint from the Hugging Face
Hub as usual:

from transformers import AutoTokenizer

model_ckpt = "deepset/minilm-uncased-squad2"
tokenizer = AutoTokenizer.from_pretrained(model_ckpt)

To see the model in action, let’s first try to extract an answer from a short passage of
text. In extractive QA tasks, the inputs are provided as (question, context) pairs, so we
pass them both to the tokenizer as follows:

question = "How much music can this hold?"
context = """An MP3 is about 1 MB/minute, so about 6000 hours depending on \
file size."""
inputs = tokenizer(question, context, return_tensors="pt")

Here we’ve returned PyTorch Tensor objects, since we’ll need them to run the for‐
ward pass through the model. If we view the tokenized inputs as a table:

input_ids 101 2129 2172 2189 2064 2023 ... 5834 2006 5371 2946 1012 102

token_type_ids 0 0 0 0 0 0 ... 1 1 1 1 1 1

attention_mask 1 1 1 1 1 1 ... 1 1 1 1 1 1

we can see the familiar input_ids and attention_mask tensors, while the
token_type_ids tensor indicates which part of the inputs corresponds to the ques‐
tion and context (a 0 indicates a question token, a 1 indicates a context token).9

To understand how the tokenizer formats the inputs for QA tasks, let’s decode the
input_ids tensor:

print(tokenizer.decode(inputs["input_ids"][0]))

Building a Review-Based QA System | 41

https://arxiv.org/abs/2002.10957
https://arxiv.org/abs/2002.10957
https://oreil.ly/df5Cu
https://oreil.ly/df5Cu

10 See Chapter 2 for details on how these hidden states can be extracted.

[CLS] how much music can this hold? [SEP] an mp3 is about 1 mb / minute, so
about 6000 hours depending on file size. [SEP]

We see that for each QA example, the inputs take the format:
[CLS] question tokens [SEP] context tokens [SEP]

where the location of the first [SEP] token is determined by the token_type_ids.
Now that our text is tokenized, we just need to instantiate the model with a QA head
and run the inputs through the forward pass:

import torch
from transformers import AutoModelForQuestionAnswering

model = AutoModelForQuestionAnswering.from_pretrained(model_ckpt)

with torch.no_grad():
 outputs = model(**inputs)
print(outputs)

QuestionAnsweringModelOutput(loss=None, start_logits=tensor([[-0.9862, -4.7750,
 -5.4025, -5.2378, -5.2863, -5.5117, -4.9819, -6.1880,
 -0.9862, 0.2596, -0.2144, -1.7136, 3.7806, 4.8561, -1.0546, -3.9097,
 -1.7374, -4.5944, -1.4278, 3.9949, 5.0390, -0.2018, -3.0193, -4.8549,
 -2.3107, -3.5110, -3.5713, -0.9862]]), end_logits=tensor([[-0.9623,
 -5.4733, -5.0326, -5.1639, -5.4278, -5.5151, -5.1749, -4.6233,
 -0.9623, -3.7855, -0.8715, -3.7745, -3.0161, -1.1780, 0.1758, -2.7365,
 4.8934, 0.3046, -3.1761, -3.2762, 0.8937, 5.6606, -0.3623, -4.9554,
 -3.2531, -0.0914, 1.6211, -0.9623]]), hidden_states=None,
attentions=None)

Here we can see that we get a QuestionAnsweringModelOutput object as the output of
the QA head. As illustrated in Figure 7-4, the QA head corresponds to a linear layer
that takes the hidden states from the encoder and computes the logits for the start
and end spans.10 This means that we treat QA as a form of token classification, similar
to what we encountered for named entity recognition in Chapter 4. To convert the
outputs into an answer span, we first need to get the logits for the start and end
tokens:

start_logits = outputs.start_logits
end_logits = outputs.end_logits

If we compare the shapes of these logits to the input IDs:
print(f"Input IDs shape: {inputs.input_ids.size()}")
print(f"Start logits shape: {start_logits.size()}")
print(f"End logits shape: {end_logits.size()}")

42 | Chapter 7: Question Answering

Input IDs shape: torch.Size([1, 28])
Start logits shape: torch.Size([1, 28])
End logits shape: torch.Size([1, 28])

we see that there are two logits (a start and end) associated with each input token. As
illustrated in Figure 7-6, larger, positive logits correspond to more likely candidates
for the start and end tokens. In this example we can see that the model assigns the
highest start token logits to the numbers “1” and “6000”, which makes sense since our
question is asking about a quantity. Similarly, we see that the end tokens with the
highest logits are “minute” and “hours”.

Figure 7-6. Predicted logits for the start and end tokens; the token with the highest score
is colored in orange

To get the final answer, we can compute the argmax over the start and end token log‐
its and then slice the span from the inputs. The following code performs these steps
and decodes the result so we can print the resulting text:

import torch

start_idx = torch.argmax(start_logits)
end_idx = torch.argmax(end_logits) + 1
answer_span = inputs["input_ids"][0][start_idx:end_idx]
answer = tokenizer.decode(answer_span)
print(f"Question: {question}")
print(f"Answer: {answer}")

Question: How much music can this hold?
Answer: 6000 hours

Building a Review-Based QA System | 43

Great, it worked! In Transformers, all of these preprocessing and postprocessing
steps are conveniently wrapped in a dedicated pipeline. We can instantiate the pipe‐
line by passing our tokenizer and fine-tuned model as follows:

from transformers import pipeline

pipe = pipeline("question-answering", model=model, tokenizer=tokenizer)
pipe(question=question, context=context, topk=3)

[{'score': 0.26516005396842957,
 'start': 38,
 'end': 48,
 'answer': '6000 hours'},
 {'score': 0.2208300083875656,
 'start': 16,
 'end': 48,
 'answer': '1 MB/minute, so about 6000 hours'},
 {'score': 0.10253632068634033,
 'start': 16,
 'end': 27,
 'answer': '1 MB/minute'}]

In addition to the answer, the pipeline also returns the model’s probability estimate in
the score field (obtained by taking a softmax over the logits). This is handy when we
want to compare multiple answers within a single context. We’ve also shown that we
can have the model predict multiple answers by specifying the topk parameter. Some‐
times, it is possible to have questions for which no answer is possible, like the empty
answers.answer_start examples in SubjQA. In these cases the model will assign a
high start and end score to the [CLS] token, and the pipeline maps this output to an
empty string:

pipe(question="Why is there no data?", context=context,
 handle_impossible_answer=True)

{'score': 0.9068416357040405, 'start': 0, 'end': 0, 'answer': ''}

In our simple example, we obtained the start and end indices by
taking the argmax of the corresponding logits. However, this heu‐
ristic can produce out-of-scope answers by selecting tokens that
belong to the question instead of the context. In practice, the pipe‐
line computes the best combination of start and end indices subject
to various constraints such as being in-scope, requiring the start
indices to precede the end indices, and so on.

44 | Chapter 7: Question Answering

Dealing with long passages
One subtlety faced by reading comprehension models is that the context often con‐
tains more tokens than the maximum sequence length of the model (which is usually
a few hundred tokens at most). As illustrated in Figure 7-7, a decent portion of the
SubjQA training set contains question-context pairs that won’t fit within MiniLM’s
context size of 512 tokens.

Figure 7-7. Distribution of tokens for each question-context pair in the SubjQA training
set

For other tasks, like text classification, we simply truncated long texts under the
assumption that enough information was contained in the embedding of the [CLS]
token to generate accurate predictions. For QA, however, this strategy is problematic
because the answer to a question could lie near the end of the context and thus would
be removed by truncation. As illustrated in Figure 7-8, the standard way to deal with
this is to apply a sliding window across the inputs, where each window contains a pas‐
sage of tokens that fit in the model’s context.

Building a Review-Based QA System | 45

Figure 7-8. How the sliding window creates multiple question-context pairs for long
documents—the !rst bar corresponds to the question, while the second bar is the context
captured in each window

In Transformers, we can set return_overflowing_tokens=True in the tokenizer to
enable the sliding window. The size of the sliding window is controlled by the
max_seq_length argument, and the size of the stride is controlled by doc_stride.
Let’s grab the first example from our training set and define a small window to illus‐
trate how this works:

example = dfs["train"].iloc[0][["question", "context"]]
tokenized_example = tokenizer(example["question"], example["context"],
 return_overflowing_tokens=True, max_length=100,
 stride=25)

In this case we now get a list of input_ids, one for each window. Let’s check the num‐
ber of tokens we have in each window:

for idx, window in enumerate(tokenized_example["input_ids"]):
 print(f"Window #{idx} has {len(window)} tokens")

Window #0 has 100 tokens
Window #1 has 88 tokens

Finally, we can see where two windows overlap by decoding the inputs:
for window in tokenized_example["input_ids"]:
 print(f"{tokenizer.decode(window)} \n")

[CLS] how is the bass? [SEP] i have had koss headphones in the past, pro 4aa and
qz - 99. the koss portapro is portable and has great bass response. the work
great with my android phone and can be " rolled up " to be carried in my
motorcycle jacket or computer bag without getting crunched. they are very light
and don't feel heavy or bear down on your ears even after listening to music
with them on all day. the sound is [SEP]

[CLS] how is the bass? [SEP] and don't feel heavy or bear down on your ears even

46 | Chapter 7: Question Answering

11 A vector is sparse if most of its elements are zero.

after listening to music with them on all day. the sound is night and day better
than any ear - bud could be and are almost as good as the pro 4aa. they are "
open air " headphones so you cannot match the bass to the sealed types, but it
comes close. for $ 32, you cannot go wrong. [SEP]

Now that we have some intuition about how QA models can extract answers from
text, let’s look at the other components we need to build an end-to-end QA pipeline.

Using Haystack to Build a QA Pipeline
In our simple answer extraction example, we provided both the question and the con‐
text to the model. However, in reality our system’s users will only provide a question
about a product, so we need some way of selecting relevant passages from among all
the reviews in our corpus. One way to do this would be to concatenate all the reviews
of a given product together and feed them to the model as a single, long context.
Although simple, the drawback of this approach is that the context can become
extremely long and thereby introduce an unacceptable latency for our users’ queries.
For example, let’s suppose that on average, each product has 30 reviews and each
review takes 100 milliseconds to process. If we need to process all the reviews to get
an answer, this would result in an average latency of 3 seconds per user query—much
too long for ecommerce websites!

To handle this, modern QA systems are typically based on the retriever-reader archi‐
tecture, which has two main components:

Retriever
Responsible for retrieving relevant documents for a given query. Retrievers are
usually categorized as sparse or dense. Sparse retrievers use word frequencies to
represent each document and query as a sparse vector.11 The relevance of a query
and a document is then determined by computing an inner product of the vec‐
tors. On the other hand, dense retrievers use encoders like transformers to repre‐
sent the query and document as contextualized embeddings (which are dense
vectors). These embeddings encode semantic meaning, and allow dense retriev‐
ers to improve search accuracy by understanding the content of the query.

Reader
Responsible for extracting an answer from the documents provided by the
retriever. The reader is usually a reading comprehension model, although at the
end of the chapter we’ll see examples of models that can generate free-form
answers.

Building a Review-Based QA System | 47

As illustrated in Figure 7-9, there can also be other components that apply post-
processing to the documents fetched by the retriever or to the answers extracted by
the reader. For example, the retrieved documents may need reranking to eliminate
noisy or irrelevant ones that can confuse the reader. Similarly, postprocessing of the
reader’s answers is often needed when the correct answer comes from various pas‐
sages in a long document.

Figure 7-9. #e retriever-reader architecture for modern QA systems

To build our QA system, we’ll use the Haystack library developed by deepset, a Ger‐
man company focused on NLP. Haystack is based on the retriever-reader architec‐
ture, abstracts much of the complexity involved in building these systems, and
integrates tightly with Transformers.

In addition to the retriever and reader, there are two more components involved
when building a QA pipeline with Haystack:

Document store
A document-oriented database that stores documents and metadata which are
provided to the retriever at query time

Pipeline
Combines all the components of a QA system to enable custom query flows,
merging documents from multiple retrievers, and more

In this section we’ll look at how we can use these components to quickly build a pro‐
totype QA pipeline. Later, we’ll examine how we can improve its performance.

48 | Chapter 7: Question Answering

https://haystack.deepset.ai
https://deepset.ai

12 The guide also provides installation instructions for macOS and Windows.

This chapter was written using version 0.9.0 of the Haystack
library. In version 0.10.0, the pipeline and evaluation APIs were
redesigned to make it easier to inspect whether the retriever or
reader are impacting performance. To see what this chapter’s code
looks like with the new API, check out the GitHub repository.

Initializing a document store
In Haystack, there are various document stores to choose from and each one can be
paired with a dedicated set of retrievers. This is illustrated in Table 7-3, where the
compatibility of sparse (TF-IDF, BM25) and dense (Embedding, DPR) retrievers is
shown for each of the available document stores. We’ll explain what all these acro‐
nyms mean later in this chapter.

Table 7-3. Compatibility of Haystack retrievers and document stores
In memory Elasticsearch FAISS Milvus

TF-IDF Yes Yes No No
BM25 No Yes No No
Embedding Yes Yes Yes Yes
DPR Yes Yes Yes Yes

Since we’ll be exploring both sparse and dense retrievers in this chapter, we’ll use the
ElasticsearchDocumentStore, which is compatible with both retriever types. Elastic‐
search is a search engine that is capable of handling a diverse range of data types,
including textual, numerical, geospatial, structured, and unstructured. Its ability to
store huge volumes of data and quickly filter it with full-text search features makes it
especially well suited for developing QA systems. It also has the advantage of being
the industry standard for infrastructure analytics, so there’s a good chance your com‐
pany already has a cluster that you can work with.

To initialize the document store, we first need to download and install Elasticsearch.
By following Elasticsearch’s guide,12 we can grab the latest release for Linux with wget
and unpack it with the tar shell command:

url = """https://artifacts.elastic.co/downloads/elasticsearch/\
elasticsearch-7.9.2-linux-x86_64.tar.gz"""
!wget -nc -q {url}
!tar -xzf elasticsearch-7.9.2-linux-x86_64.tar.gz

Next we need to start the Elasticsearch server. Since we’re running all the code in this
book within Jupyter notebooks, we’ll need to use Python’s Popen() function to spawn

Building a Review-Based QA System | 49

https://oreil.ly/qbqgv
https://github.com/nlp-with-transformers/notebooks
https://oreil.ly/bgmKq

a new process. While we’re at it, let’s also run the subprocess in the background using
the chown shell command:

import os
from subprocess import Popen, PIPE, STDOUT

Run Elasticsearch as a background process
!chown -R daemon:daemon elasticsearch-7.9.2
es_server = Popen(args=['elasticsearch-7.9.2/bin/elasticsearch'],
 stdout=PIPE, stderr=STDOUT, preexec_fn=lambda: os.setuid(1))
Wait until Elasticsearch has started
!sleep 30

In the Popen() function, the args specify the program we wish to execute, while
stdout=PIPE creates a new pipe for the standard output and stderr=STDOUT collects
the errors in the same pipe. The preexec_fn argument specifies the ID of the subpro‐
cess we wish to use. By default, Elasticsearch runs locally on port 9200, so we can test
the connection by sending an HTTP request to localhost:

!curl -X GET "localhost:9200/?pretty"

{
 "name" : "96938eee37cd",
 "cluster_name" : "docker-cluster",
 "cluster_uuid" : "ABGDdvbbRWmMb9Umz79HbA",
 "version" : {
 "number" : "7.9.2",
 "build_flavor" : "default",
 "build_type" : "docker",
 "build_hash" : "d34da0ea4a966c4e49417f2da2f244e3e97b4e6e",
 "build_date" : "2020-09-23T00:45:33.626720Z",
 "build_snapshot" : false,
 "lucene_version" : "8.6.2",
 "minimum_wire_compatibility_version" : "6.8.0",
 "minimum_index_compatibility_version" : "6.0.0-beta1"
 },
 "tagline" : "You Know, for Search"
}

Now that our Elasticsearch server is up and running, the next thing to do is instanti‐
ate the document store:

from haystack.document_store.elasticsearch import ElasticsearchDocumentStore

Return the document embedding for later use with dense retriever
document_store = ElasticsearchDocumentStore(return_embedding=True)

By default, ElasticsearchDocumentStore creates two indices on Elasticsearch: one
called document for (you guessed it) storing documents, and another called label for
storing the annotated answer spans. For now, we’ll just populate the document index

50 | Chapter 7: Question Answering

13 For an in-depth explanation of document scoring with TF-IDF and BM25 see Chapter 23 of Speech and Lan‐
guage Processing, 3rd edition, by D. Jurafsky and J.H. Martin (Prentice Hall).

with the SubjQA reviews, and Haystack’s document stores expect a list of dictionaries
with text and meta keys as follows:

{
 "text": "<the-context>",
 "meta": {
 "field_01": "<additional-metadata>",
 "field_02": "<additional-metadata>",
 ...
 }
}

The fields in meta can be used for applying filters during retrieval. For our purposes
we’ll include the item_id and q_review_id columns of SubjQA so we can filter by
product and question ID, along with the corresponding training split. We can then
loop through the examples in each DataFrame and add them to the index with the
write_documents() method as follows:

for split, df in dfs.items():
 # Exclude duplicate reviews
 docs = [{"text": row["context"],
 "meta":{"item_id": row["title"], "question_id": row["id"],
 "split": split}}
 for _,row in df.drop_duplicates(subset="context").iterrows()]
 document_store.write_documents(docs, index="document")

print(f"Loaded {document_store.get_document_count()} documents")

Loaded 1615 documents

Great, we’ve loaded all our reviews into an index! To search the index we’ll need a
retriever, so let’s look at how we can initialize one for Elasticsearch.

Initializing a retriever
The Elasticsearch document store can be paired with any of the Haystack retrievers,
so let’s start by using a sparse retriever based on BM25 (short for “Best Match 25”).
BM25 is an improved version of the classic Term Frequency-Inverse Document Fre‐
quency (TF-IDF) algorithm and represents the question and context as sparse vectors
that can be searched efficiently on Elasticsearch. The BM25 score measures how
much matched text is about a search query and improves on TF-IDF by saturating TF
values quickly and normalizing the document length so that short documents are
favored over long ones.13

Building a Review-Based QA System | 51

In Haystack, the BM25 retriever is used by default in ElasticsearchRetriever, so
let’s initialize this class by specifying the document store we wish to search over:

from haystack.retriever.sparse import ElasticsearchRetriever

es_retriever = ElasticsearchRetriever(document_store=document_store)

Next, let’s look at a simple query for a single electronics product in the training set.
For review-based QA systems like ours, it’s important to restrict the queries to a single
item because otherwise the retriever would source reviews about products that are
not related to a user’s query. For example, asking “Is the camera quality any good?”
without a product filter could return reviews about phones, when the user might be
asking about a specific laptop camera instead. By themselves, the ASIN values in our
dataset are a bit cryptic, but we can decipher them with online tools like amazon
ASIN or by simply appending the value of item_id to the www.amazon.com/dp/ URL.
The following item ID corresponds to one of Amazon’s Fire tablets, so let’s use the
retriever’s retrieve() method to ask if it’s any good for reading with:

item_id = "B0074BW614"
query = "Is it good for reading?"
retrieved_docs = es_retriever.retrieve(
 query=query, top_k=3, filters={"item_id":[item_id], "split":["train"]})

Here we’ve specified how many documents to return with the top_k argument and
applied a filter on both the item_id and split keys that were included in the meta
field of our documents. Each element of retrieved_docs is a Haystack Document
object that is used to represent documents and includes the retriever’s query score
along with other metadata. Let’s have a look at one of the retrieved documents:

print(retrieved_docs[0])

{'text': 'This is a gift to myself. I have been a kindle user for 4 years and
this is my third one. I never thought I would want a fire for I mainly use it
for book reading. I decided to try the fire for when I travel I take my laptop,
my phone and my iPod classic. I love my iPod but watching movies on the plane
with it can be challenging because it is so small. Laptops battery life is not
as good as the Kindle. So the Fire combines for me what I needed all three to
do. So far so good.', 'score': 6.243799, 'probability': 0.6857824513476455,
'question': None, 'meta': {'item_id': 'B0074BW614', 'question_id':
'868e311275e26dbafe5af70774a300f3', 'split': 'train'}, 'embedding': None, 'id':
'252e83e25d52df7311d597dc89eef9f6'}

In addition to the document’s text, we can see the score that Elasticsearch computed
for its relevance to the query (larger scores imply a better match). Under the hood,
Elasticsearch relies on Lucene for indexing and search, so by default it uses Lucene’s
practical scoring function. You can find the nitty-gritty details behind the scoring
function in the Elasticsearch documentation, but in brief terms it first filters the can‐
didate documents by applying a Boolean test (does the document match the query?),

52 | Chapter 7: Question Answering

https://amazon-asin.com
https://amazon-asin.com
https://lucene.apache.org
https://oreil.ly/b1Seu

and then applies a similarity metric that’s based on representing both the document
and the query as vectors.

Now that we have a way to retrieve relevant documents, the next thing we need is a
way to extract answers from them. This is where the reader comes in, so let’s take a
look at how we can load our MiniLM model in Haystack.

Initializing a reader
In Haystack, there are two types of readers one can use to extract answers from a
given context:

FARMReader
Based on deepset’s FARM framework for fine-tuning and deploying transform‐
ers. Compatible with models trained using Transformers and can load models
directly from the Hugging Face Hub.

TransformersReader
Based on the QA pipeline from Transformers. Suitable for running inference
only.

Although both readers handle a model’s weights in the same way, there are some dif‐
ferences in the way the predictions are converted to produce answers:

• In Transformers, the QA pipeline normalizes the start and end logits with a
softmax in each passage. This means that it is only meaningful to compare
answer scores between answers extracted from the same passage, where the prob‐
abilities sum to 1. For example, an answer score of 0.9 from one passage is not
necessarily better than a score of 0.8 in another. In FARM, the logits are not nor‐
malized, so inter-passage answers can be compared more easily.

• The TransformersReader sometimes predicts the same answer twice, but with
different scores. This can happen in long contexts if the answer lies across two
overlapping windows. In FARM, these duplicates are removed.

Since we will be fine-tuning the reader later in the chapter, we’ll use the FARMReader.
As with Transformers, to load the model we just need to specify the MiniLM
checkpoint on the Hugging Face Hub along with some QA-specific arguments:

from haystack.reader.farm import FARMReader

model_ckpt = "deepset/minilm-uncased-squad2"
max_seq_length, doc_stride = 384, 128
reader = FARMReader(model_name_or_path=model_ckpt, progress_bar=False,
 max_seq_len=max_seq_length, doc_stride=doc_stride,
 return_no_answer=True)

Building a Review-Based QA System | 53

https://farm.deepset.ai

It is also possible to fine-tune a reading comprehension model
directly in Transformers and then load it in Transformers
Reader to run inference. For details on how to do the fine-tuning
step, see the question answering tutorial in the library’s
documentation.

In FARMReader, the behavior of the sliding window is controlled by the same
max_seq_length and doc_stride arguments that we saw for the tokenizer. Here we’ve
used the values from the MiniLM paper. To confirm, let’s now test the reader on our
simple example from earlier:

print(reader.predict_on_texts(question=question, texts=[context], top_k=1))

{'query': 'How much music can this hold?', 'no_ans_gap': 12.648084878921509,
'answers': [{'answer': '6000 hours', 'score': 10.69961929321289, 'probability':
0.3988136053085327, 'context': 'An MP3 is about 1 MB/minute, so about 6000 hours
depending on file size.', 'offset_start': 38, 'offset_end': 48,
'offset_start_in_doc': 38, 'offset_end_in_doc': 48, 'document_id':
'e344757014e804eff50faa3ecf1c9c75'}]}

Great, the reader appears to be working as expected—so next, let’s tie together all our
components using one of Haystack’s pipelines.

Putting it all together
Haystack provides a Pipeline abstraction that allows us to combine retrievers, read‐
ers, and other components together as a graph that can be easily customized for each
use case. There are also predefined pipelines analogous to those in Transformers,
but specialized for QA systems. In our case, we’re interested in extracting answers, so
we’ll use the ExtractiveQAPipeline, which takes a single retriever-reader pair as its
arguments:

from haystack.pipeline import ExtractiveQAPipeline

pipe = ExtractiveQAPipeline(reader, es_retriever)

Each Pipeline has a run() method that specifies how the query flow should be exe‐
cuted. For the ExtractiveQAPipeline we just need to pass the query, the number of
documents to retrieve with top_k_retriever, and the number of answers to extract
from these documents with top_k_reader. In our case, we also need to specify a filter
over the item ID, which can be done using the filters argument as we did with the
retriever earlier. Let’s run a simple example using our question about the Amazon
Fire tablet again, but this time returning the extracted answers:

n_answers = 3
preds = pipe.run(query=query, top_k_retriever=3, top_k_reader=n_answers,
 filters={"item_id": [item_id], "split":["train"]})

print(f"Question: {preds['query']} \n")

54 | Chapter 7: Question Answering

https://oreil.ly/VkhIQ
https://oreil.ly/VkhIQ

for idx in range(n_answers):
 print(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")
 print(f"Review snippet: ...{preds['answers'][idx]['context']}...")
 print("\n\n")

Question: Is it good for reading?

Answer 1: I mainly use it for book reading
Review snippet: ... is my third one. I never thought I would want a fire for I
mainly use it for book reading. I decided to try the fire for when I travel I
take my la...

Answer 2: the larger screen compared to the Kindle makes for easier reading
Review snippet: ...ght enough that I can hold it to read, but the larger screen
compared to the Kindle makes for easier reading. I love the color, something I
never thou...

Answer 3: it is great for reading books when no light is available
Review snippet: ...ecoming addicted to hers! Our son LOVES it and it is great
for reading books when no light is available. Amazing sound but I suggest good
headphones t...

Great, we now have an end-to-end QA system for Amazon product reviews! This is a
good start, but notice that the second and third answers are closer to what the ques‐
tion is actually asking. To do better, we’ll need some metrics to quantify the perfor‐
mance of the retriever and reader. We’ll take a look at that next.

Improving Our QA Pipeline
Although much of the recent research on QA has focused on improving reading com‐
prehension models, in practice it doesn’t matter how good your reader is if the
retriever can’t find the relevant documents in the first place! In particular, the
retriever sets an upper bound on the performance of the whole QA system, so it’s
important to make sure it’s doing a good job. With this in mind, let’s start by intro‐
ducing some common metrics to evaluate the retriever so that we can compare the
performance of sparse and dense representations.

Evaluating the Retriever
A common metric for evaluating retrievers is recall, which measures the fraction of all
relevant documents that are retrieved. In this context, “relevant” simply means
whether the answer is present in a passage of text or not, so given a set of questions,
we can compute recall by counting the number of times an answer appears in the top
k documents returned by the retriever.

Improving Our QA Pipeline | 55

In Haystack, there are two ways to evaluate retrievers:

• Use the retriever’s in-built eval() method. This can be used for both open- and
closed-domain QA, but not for datasets like SubjQA where each document is
paired with a single product and we need to filter by product ID for every query.

• Build a custom Pipeline that combines a retriever with the EvalRetriever class.
This enables the implementation of custom metrics and query flows.

A complementary metric to recall is mean average precision (mAP),
which rewards retrievers that can place the correct answers higher
up in the document ranking.

Since we need to evaluate the recall per product and then aggregate across all prod‐
ucts, we’ll opt for the second approach. Each node in the Pipeline graph represents a
class that takes some inputs and produces some outputs via a run() method:

class PipelineNode:
 def __init__(self):
 self.outgoing_edges = 1

 def run(self, **kwargs):
 ...
 return (outputs, "outgoing_edge_name")

Here kwargs corresponds to the outputs from the previous node in the graph, which
is manipulated within the run() method to return a tuple of the outputs for the next
node, along with a name for the outgoing edge. The only other requirement is to
include an outgoing_edges attribute that indicates the number of outputs from the
node (in most cases outgoing_edges=1, unless you have branches in the pipeline that
route the inputs according to some criterion).

In our case, we need a node to evaluate the retriever, so we’ll use the EvalRetriever
class whose run() method keeps track of which documents have answers that match
the ground truth. With this class we can then build up a Pipeline graph by adding
the evaluation node after a node that represents the retriever itself:

from haystack.pipeline import Pipeline
from haystack.eval import EvalDocuments

class EvalRetrieverPipeline:
 def __init__(self, retriever):
 self.retriever = retriever
 self.eval_retriever = EvalDocuments()
 pipe = Pipeline()
 pipe.add_node(component=self.retriever, name="ESRetriever",

56 | Chapter 7: Question Answering

 inputs=["Query"])
 pipe.add_node(component=self.eval_retriever, name="EvalRetriever",
 inputs=["ESRetriever"])
 self.pipeline = pipe

pipe = EvalRetrieverPipeline(es_retriever)

Notice that each node is given a name and a list of inputs. In most cases, each node
has a single outgoing edge, so we just need to include the name of the previous node
in inputs.

Now that we have our evaluation pipeline, we need to pass some queries and their
corresponding answers. To do this, we’ll add the answers to a dedicated label index
on our document store. Haystack provides a Label object that represents the answer
spans and their metadata in a standardized fashion. To populate the label index,
we’ll first create a list of Label objects by looping over each question in the test set
and extracting the matching answers and additional metadata:

from haystack import Label

labels = []
for i, row in dfs["test"].iterrows():
 # Metadata used for filtering in the Retriever
 meta = {"item_id": row["title"], "question_id": row["id"]}
 # Populate labels for questions with answers
 if len(row["answers.text"]):
 for answer in row["answers.text"]:
 label = Label(
 question=row["question"], answer=answer, id=i, origin=row["id"],
 meta=meta, is_correct_answer=True, is_correct_document=True,
 no_answer=False)
 labels.append(label)
 # Populate labels for questions without answers
 else:
 label = Label(
 question=row["question"], answer="", id=i, origin=row["id"],
 meta=meta, is_correct_answer=True, is_correct_document=True,
 no_answer=True)
 labels.append(label)

If we peek at one of these labels:
print(labels[0])

{'id': 'e28f5e62-85e8-41b2-8a34-fbff63b7a466', 'created_at': None, 'updated_at':
None, 'question': 'What is the tonal balance of these headphones?', 'answer': 'I
have been a headphone fanatic for thirty years', 'is_correct_answer': True,
'is_correct_document': True, 'origin': 'd0781d13200014aa25860e44da9d5ea7',
'document_id': None, 'offset_start_in_doc': None, 'no_answer': False,
'model_id': None, 'meta': {'item_id': 'B00001WRSJ', 'question_id':
'd0781d13200014aa25860e44da9d5ea7'}}

Improving Our QA Pipeline | 57

we can see the question-answer pair, along with an origin field that contains the
unique question ID so we can filter the document store per question. We’ve also
added the product ID to the meta field so we can filter the labels by product. Now that
we have our labels, we can write them to the label index on Elasticsearch as follows:

document_store.write_labels(labels, index="label")
print(f"""Loaded {document_store.get_label_count(index="label")} \
question-answer pairs""")

Loaded 358 question-answer pairs

Next, we need to build up a mapping between our question IDs and corresponding
answers that we can pass to the pipeline. To get all the labels, we can use the
get_all_labels_aggregated() method from the document store that will aggregate
all question-answer pairs associated with a unique ID. This method returns a list of
MultiLabel objects, but in our case we only get one element since we’re filtering by
question ID. We can build up a list of aggregated labels as follows:

labels_agg = document_store.get_all_labels_aggregated(
 index="label",
 open_domain=True,
 aggregate_by_meta=["item_id"]
)
print(len(labels_agg))

330

By peeking at one of these labels we can see that all the answers associated with a
given question are aggregated together in a multiple_answers field:

print(labels_agg[109])

{'question': 'How does the fan work?', 'multiple_answers': ['the fan is really
really good', "the fan itself isn't super loud. There is an adjustable dial to
change fan speed"], 'is_correct_answer': True, 'is_correct_document': True,
'origin': '5a9b7616541f700f103d21f8ad41bc4b', 'multiple_document_ids': [None,
None], 'multiple_offset_start_in_docs': [None, None], 'no_answer': False,
'model_id': None, 'meta': {'item_id': 'B002MU1ZRS'}}

We now have all the ingredients for evaluating the retriever, so let’s define a function
that feeds each question-answer pair associated with each product to the evaluation
pipeline and tracks the correct retrievals in our pipe object:

def run_pipeline(pipeline, top_k_retriever=10, top_k_reader=4):
 for l in labels_agg:
 _ = pipeline.pipeline.run(
 query=l.question,
 top_k_retriever=top_k_retriever,
 top_k_reader=top_k_reader,
 top_k_eval_documents=top_k_retriever,
 labels=l,
 filters={"item_id": [l.meta["item_id"]], "split": ["test"]})

58 | Chapter 7: Question Answering

run_pipeline(pipe, top_k_retriever=3)
print(f"Recall@3: {pipe.eval_retriever.recall:.2f}")

Recall@3: 0.95

Great, it works! Notice that we picked a specific value for top_k_retriever to specify
the number of documents to retrieve. In general, increasing this parameter will
improve the recall, but at the expense of providing more documents to the reader and
slowing down the end-to-end pipeline. To guide our decision on which value to pick,
we’ll create a function that loops over several k values and compute the recall across
the whole test set for each k:

def evaluate_retriever(retriever, topk_values = [1,3,5,10,20]):
 topk_results = {}

 for topk in topk_values:
 # Create Pipeline
 p = EvalRetrieverPipeline(retriever)
 # Loop over each question-answers pair in test set
 run_pipeline(p, top_k_retriever=topk)
 # Get metrics
 topk_results[topk] = {"recall": p.eval_retriever.recall}

 return pd.DataFrame.from_dict(topk_results, orient="index")

es_topk_df = evaluate_retriever(es_retriever)

If we plot the results, we can see how the recall improves as we increase k:
def plot_retriever_eval(dfs, retriever_names):
 fig, ax = plt.subplots()
 for df, retriever_name in zip(dfs, retriever_names):
 df.plot(y="recall", ax=ax, label=retriever_name)
 plt.xticks(df.index)
 plt.ylabel("Top-k Recall")
 plt.xlabel("k")
 plt.show()

plot_retriever_eval([es_topk_df], ["BM25"])

Improving Our QA Pipeline | 59

14 V. Karpukhin et al., “Dense Passage Retrieval for Open-Domain Question Answering”, (2020).

From the plot, we can see that there’s an inflection point around k = 5 and we get
almost perfect recall from k = 10 onwards. Let’s now take a look at retrieving docu‐
ments with dense vector techniques.

Dense Passage Retrieval
We’ve seen that we get almost perfect recall when our sparse retriever returns k = 10
documents, but can we do better at smaller values of k? The advantage of doing so is
that we can pass fewer documents to the reader and thereby reduce the overall
latency of our QA pipeline. A well-known limitation of sparse retrievers like BM25 is
that they can fail to capture the relevant documents if the user query contains terms
that don’t match exactly those of the review. One promising alternative is to use dense
embeddings to represent the question and document, and the current state of the art
is an architecture known as Dense Passage Retrieval (DPR).14 The main idea behind
DPR is to use two BERT models as encoders for the question and the passage. As
illustrated in Figure 7-10, these encoders map the input text into a d-dimensional
vector representation of the [CLS] token.

60 | Chapter 7: Question Answering

https://arxiv.org/abs/2004.04906

Figure 7-10. DPR’s bi-encoder architecture for computing the relevance of a document
and query

In Haystack, we can initialize a retriever for DPR in a similar way to what we did for
BM25. In addition to specifying the document store, we also need to pick the BERT
encoders for the question and passage. These encoders are trained by giving them
questions with relevant (positive) passages and irrelevant (negative) passages, where
the goal is to learn that relevant question-passage pairs have a higher similarity. For
our use case, we’ll use encoders that have been fine-tuned on the NQ corpus in this
way:

from haystack.retriever.dense import DensePassageRetriever

dpr_retriever = DensePassageRetriever(document_store=document_store,
 query_embedding_model="facebook/dpr-question_encoder-single-nq-base",
 passage_embedding_model="facebook/dpr-ctx_encoder-single-nq-base",
 embed_title=False)

Here we’ve also set embed_title=False since concatenating the document’s title (i.e.,
item_id) doesn’t provide any additional information because we filter per product.
Once we’ve initialized the dense retriever, the next step is to iterate over all the
indexed documents in our Elasticsearch index and apply the encoders to update the
embedding representation. This can be done as follows:

document_store.update_embeddings(retriever=dpr_retriever)

Improving Our QA Pipeline | 61

We’re now set to go! We can evaluate the dense retriever in the same way we did for
BM25 and compare the top-k recall:

dpr_topk_df = evaluate_retriever(dpr_retriever)
plot_retriever_eval([es_topk_df, dpr_topk_df], ["BM25", "DPR"])

Here we can see that DPR does not provide a boost in recall over BM25 and saturates
around k = 3.

Performing similarity search of the embeddings can be sped up by
using Facebook’s FAISS library as the document store. Similarly, the
performance of the DPR retriever can be improved by fine-tuning
on the target domain. If you’d like to learn how to fine-tune DPR,
check out the Haystack tutorial.

Now that we’ve explored the evaluation of the retriever, let’s turn to evaluating the
reader.

Evaluating the Reader
In extractive QA, there are two main metrics that are used for evaluating readers:

Exact Match (EM)
A binary metric that gives EM = 1 if the characters in the predicted and ground
truth answers match exactly, and EM = 0 otherwise. If no answer is expected, the
model gets EM = 0 if it predicts any text at all.

F1-score
Measures the harmonic mean of the precision and recall.

62 | Chapter 7: Question Answering

https://oreil.ly/1E8Z0
https://oreil.ly/eXyro

Let’s see how these metrics work by importing some helper functions from FARM
and applying them to a simple example:

from farm.evaluation.squad_evaluation import compute_f1, compute_exact

pred = "about 6000 hours"
label = "6000 hours"
print(f"EM: {compute_exact(label, pred)}")
print(f"F1: {compute_f1(label, pred)}")

EM: 0
F1: 0.8

Under the hood, these functions first normalize the prediction and label by removing
punctuation, fixing whitespace, and converting to lowercase. The normalized strings
are then tokenized as a bag-of-words, before finally computing the metric at the
token level. From this simple example we can see that EM is a much stricter metric
than the F1-score: adding a single token to the prediction gives an EM of zero. On the
other hand, the F1-score can fail to catch truly incorrect answers. For example, if our
predicted answer span is “about 6000 dollars”, then we get:

pred = "about 6000 dollars"
print(f"EM: {compute_exact(label, pred)}")
print(f"F1: {compute_f1(label, pred)}")

EM: 0
F1: 0.4

Relying on just the F1-score is thus misleading, and tracking both metrics is a good
strategy to balance the trade-off between underestimating (EM) and overestimating
(F1-score) model performance.

Now in general, there are multiple valid answers per question, so these metrics are
calculated for each question-answer pair in the evaluation set, and the best score is
selected over all possible answers. The overall EM and F1 scores for the model are
then obtained by averaging over the individual scores of each question-answer pair.

To evaluate the reader we’ll create a new pipeline with two nodes: a reader node and a
node to evaluate the reader. We’ll use the EvalReader class that takes the predictions
from the reader and computes the corresponding EM and F1 scores. To compare with
the SQuAD evaluation, we’ll take the best answers for each query with the top_1_em
and top_1_f1 metrics that are stored in EvalAnswers:

Improving Our QA Pipeline | 63

from haystack.eval import EvalAnswers

def evaluate_reader(reader):
 score_keys = ['top_1_em', 'top_1_f1']
 eval_reader = EvalAnswers(skip_incorrect_retrieval=False)
 pipe = Pipeline()
 pipe.add_node(component=reader, name="QAReader", inputs=["Query"])
 pipe.add_node(component=eval_reader, name="EvalReader", inputs=["QAReader"])

 for l in labels_agg:
 doc = document_store.query(l.question,
 filters={"question_id":[l.origin]})
 _ = pipe.run(query=l.question, documents=doc, labels=l)

 return {k:v for k,v in eval_reader.__dict__.items() if k in score_keys}

reader_eval = {}
reader_eval["Fine-tune on SQuAD"] = evaluate_reader(reader)

Notice that we specified skip_incorrect_retrieval=False. This is to ensure that
the retriever always passes the context to the reader (as in the SQuAD evaluation).
Now that we’ve run every question through the reader, let’s print the scores:

def plot_reader_eval(reader_eval):
 fig, ax = plt.subplots()
 df = pd.DataFrame.from_dict(reader_eval)
 df.plot(kind="bar", ylabel="Score", rot=0, ax=ax)
 ax.set_xticklabels(["EM", "F1"])
 plt.legend(loc='upper left')
 plt.show()

plot_reader_eval(reader_eval)

64 | Chapter 7: Question Answering

15 D. Yogatama et al., “Learning and Evaluating General Linguistic Intelligence”, (2019).

OK, it seems that the fine-tuned model performs significantly worse on SubjQA than
on SQuAD 2.0, where MiniLM achieves EM and F1 scores of 76.1 and 79.5, respec‐
tively. One reason for the performance drop is that customer reviews are quite differ‐
ent from the Wikipedia articles the SQuAD 2.0 dataset is generated from, and the
language they use is often informal. Another factor is likely the inherent subjectivity
of our dataset, where both questions and answers differ from the factual information
contained in Wikipedia. Let’s look at how to fine-tune a model on a dataset to get bet‐
ter results with domain adaptation.

Domain Adaptation
Although models that are fine-tuned on SQuAD will often generalize well to other
domains, we’ve seen that for SubjQA the EM and F1 scores of our model were much
worse than for SQuAD. This failure to generalize has also been observed in other
extractive QA datasets and is understood as evidence that transformer models are
particularly adept at overfitting to SQuAD.15 The most straightforward way to
improve the reader is by fine-tuning our MiniLM model further on the SubjQA train‐
ing set. The FARMReader has a train() method that is designed for this purpose and
expects the data to be in SQuAD JSON format, where all the question-answer pairs
are grouped together for each item as illustrated in Figure 7-11.

Improving Our QA Pipeline | 65

https://arXiv.org/abs/1901.11373

Figure 7-11. Visualization of the SQuAD JSON format

This is quite a complex data format, so we’ll need a few functions and some Pandas
magic to help us do the conversion. The first thing we need to do is implement a
function that can create the paragraphs array associated with each product ID. Each
element in this array contains a single context (i.e., review) and a qas array of
question-answer pairs. Here’s a function that builds up the paragraphs array:

def create_paragraphs(df):
 paragraphs = []
 id2context = dict(zip(df["review_id"], df["context"]))
 for review_id, review in id2context.items():
 qas = []
 # Filter for all question-answer pairs about a specific context
 review_df = df.query(f"review_id == '{review_id}'")
 id2question = dict(zip(review_df["id"], review_df["question"]))
 # Build up the qas array

66 | Chapter 7: Question Answering

 for qid, question in id2question.items():
 # Filter for a single question ID
 question_df = df.query(f"id == '{qid}'").to_dict(orient="list")
 ans_start_idxs = question_df["answers.answer_start"][0].tolist()
 ans_text = question_df["answers.text"][0].tolist()
 # Fill answerable questions
 if len(ans_start_idxs):
 answers = [
 {"text": text, "answer_start": answer_start}
 for text, answer_start in zip(ans_text, ans_start_idxs)]
 is_impossible = False
 else:
 answers = []
 is_impossible = True
 # Add question-answer pairs to qas
 qas.append({"question": question, "id": qid,
 "is_impossible": is_impossible, "answers": answers})
 # Add context and question-answer pairs to paragraphs
 paragraphs.append({"qas": qas, "context": review})
 return paragraphs

Now, when we apply to the rows of a DataFrame associated with a single product ID,
we get the SQuAD format:

product = dfs["train"].query("title == 'B00001P4ZH'")
create_paragraphs(product)

[{'qas': [{'question': 'How is the bass?',
 'id': '2543d296da9766d8d17d040ecc781699',
 'is_impossible': True,
 'answers': []}],
 'context': 'I have had Koss headphones ...',
 'id': 'd476830bf9282e2b9033e2bb44bbb995',
 'is_impossible': False,
 'answers': [{'text': 'Bass is weak as expected', 'answer_start': 1302},
 {'text': 'Bass is weak as expected, even with EQ adjusted up',
 'answer_start': 1302}]}],
 'context': 'To anyone who hasn\'t tried all ...'},
 {'qas': [{'question': 'How is the bass?',
 'id': '455575557886d6dfeea5aa19577e5de4',
 'is_impossible': False,
 'answers': [{'text': 'The only fault in the sound is the bass',
 'answer_start': 650}]}],
 'context': "I have had many sub-$100 headphones ..."}]

The final step is to then apply this function to each product ID in the DataFrame of
each split. The following convert_to_squad() function does this trick and stores the
result in an electronics-{split}.json file:

import json

def convert_to_squad(dfs):
 for split, df in dfs.items():

Improving Our QA Pipeline | 67

 subjqa_data = {}
 # Create `paragraphs` for each product ID
 groups = (df.groupby("title").apply(create_paragraphs)
 .to_frame(name="paragraphs").reset_index())
 subjqa_data["data"] = groups.to_dict(orient="records")
 # Save the result to disk
 with open(f"electronics-{split}.json", "w+", encoding="utf-8") as f:
 json.dump(subjqa_data, f)

convert_to_squad(dfs)

Now that we have the splits in the right format, let’s fine-tune our reader by specify‐
ing the locations of the train and dev splits, along with where to save the fine-tuned
model:

train_filename = "electronics-train.json"
dev_filename = "electronics-validation.json"

reader.train(data_dir=".", use_gpu=True, n_epochs=1, batch_size=16,
 train_filename=train_filename, dev_filename=dev_filename)

With the reader fine-tuned, let’s now compare its performance on the test set against
our baseline model:

reader_eval["Fine-tune on SQuAD + SubjQA"] = evaluate_reader(reader)
plot_reader_eval(reader_eval)

Wow, domain adaptation has increased our EM score by a factor of six and more than
doubled the F1-score! At this point, you might be wondering why we didn’t just fine-
tune a pretrained language model directly on the SubjQA training set. One reason is
that we only have 1,295 training examples in SubjQA while SQuAD has over 100,000,
so we might run into challenges with overfitting. Nevertheless, let’s take a look at what
naive fine-tuning produces. For a fair comparison, we’ll use the same language model

68 | Chapter 7: Question Answering

that was used for fine-tuning our baseline on SQuAD. As before, we’ll load up the
model with the FARMReader:

minilm_ckpt = "microsoft/MiniLM-L12-H384-uncased"
minilm_reader = FARMReader(model_name_or_path=minilm_ckpt, progress_bar=False,
 max_seq_len=max_seq_length, doc_stride=doc_stride,
 return_no_answer=True)

Next, we fine-tune for one epoch:
minilm_reader.train(data_dir=".", use_gpu=True, n_epochs=1, batch_size=16,
 train_filename=train_filename, dev_filename=dev_filename)

and include the evaluation on the test set:
reader_eval["Fine-tune on SubjQA"] = evaluate_reader(minilm_reader)
plot_reader_eval(reader_eval)

We can see that fine-tuning the language model directly on SubjQA results in consid‐
erably worse performance than fine-tuning on SQuAD and SubjQA.

When dealing with small datasets, it is best practice to use cross-
validation when evaluating transformers as they can be prone to
overfitting. You can find an example of how to perform cross-
validation with SQuAD-formatted datasets in the FARM
repository.

Evaluating the Whole QA Pipeline
Now that we’ve seen how to evaluate the reader and retriever components individu‐
ally, let’s tie them together to measure the overall performance of our pipeline. To do
so, we’ll need to augment our retriever pipeline with nodes for the reader and its

Improving Our QA Pipeline | 69

https://oreil.ly/K3nK8
https://oreil.ly/K3nK8

evaluation. We’ve seen that we get almost perfect recall at k = 10, so we can fix this
value and assess the impact this has on the reader’s performance (since it will now
receive multiple contexts per query compared to the SQuAD-style evaluation):

Initialize retriever pipeline
pipe = EvalRetrieverPipeline(es_retriever)
Add nodes for reader
eval_reader = EvalAnswers()
pipe.pipeline.add_node(component=reader, name="QAReader",
 inputs=["EvalRetriever"])
pipe.pipeline.add_node(component=eval_reader, name="EvalReader",
 inputs=["QAReader"])
Evaluate!
run_pipeline(pipe)
Extract metrics from reader
reader_eval["QA Pipeline (top-1)"] = {
 k:v for k,v in eval_reader.__dict__.items()
 if k in ["top_1_em", "top_1_f1"]}

We can then compare the top 1 EM and F1 scores for the model to predict an answer
in the documents returned by the retriever in Figure 7-12.

Figure 7-12. Comparison of EM and F scores for the reader against the whole QA1
pipeline

From this plot we can see the effect that the retriever has on the overall performance.
In particular, there is an overall degradation compared to matching the question-
context pairs, as is done in the SQuAD-style evaluation. This can be circumvented by
increasing the number of possible answers that the reader is allowed to predict.

Until now we have only extracted answer spans from the context, but in general it
could be that bits and pieces of the answer are scattered throughout the document

70 | Chapter 7: Question Answering

16 P. Lewis et al., “Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks”, (2020).

and we would like our model to synthesize these fragments into a single coherent
answer. Let’s have a look at how we can use generative QA to succeed at this task.

Going Beyond Extractive QA
One interesting alternative to extracting answers as spans of text in a document is to
generate them with a pretrained language model. This approach is often referred to as
abstractive or generative QA and has the potential to produce better-phrased answers
that synthesize evidence across multiple passages. Although less mature than extrac‐
tive QA, this is a fast-moving field of research, so chances are that these approaches
will be widely adopted in industry by the time you are reading this! In this section
we’ll briefly touch on the current state of the art: retrieval-augmented generation
(RAG).16

RAG extends the classic retriever-reader architecture that we’ve seen in this chapter
by swapping the reader for a generator and using DPR as the retriever. The generator
is a pretrained sequence-to-sequence transformer like T5 or BART that receives latent
vectors of documents from DPR and then iteratively generates an answer based on
the query and these documents. Since DPR and the generator are differentiable, the
whole process can be fine-tuned end-to-end as illustrated in Figure 7-13.

Figure 7-13. #e RAG architecture for !ne-tuning a retriever and generator end-to-end
(courtesy of Ethan Perez)

To show RAG in action we’ll use the DPRetriever from earlier, so we just need to
instantiate a generator. There are two types of RAG models to choose from:

RAG-Sequence
Uses the same retrieved document to generate the complete answer. In particular,
the top k documents from the retriever are fed to the generator, which produces
an output sequence for each document, and the result is marginalized to obtain
the best answer.

Going Beyond Extractive QA | 71

https://arxiv.org/abs/2005.11401

RAG-Token
Can use a different document to generate each token in the answer. This allows
the generator to synthesize evidence from multiple documents.

Since RAG-Token models tend to perform better than RAG-Sequence ones, we’ll use
the token model that was fine-tuned on NQ as our generator. Instantiating a genera‐
tor in Haystack is similar to instantiating the reader, but instead of specifying the
max_seq_length and doc_stride parameters for a sliding window over the contexts,
we specify hyperparameters that control the text generation:

from haystack.generator.transformers import RAGenerator

generator = RAGenerator(model_name_or_path="facebook/rag-token-nq",
 embed_title=False, num_beams=5)

Here num_beams specifies the number of beams to use in beam search (text generation
is covered at length in Chapter 5). As we did with the DPR retriever, we don’t embed
the document titles since our corpus is always filtered per product ID.

The next thing to do is tie together the retriever and generator using Haystack’s
GenerativeQAPipeline:

from haystack.pipeline import GenerativeQAPipeline

pipe = GenerativeQAPipeline(generator=generator, retriever=dpr_retriever)

In RAG, both the query encoder and the generator are trained end-
to-end, while the context encoder is frozen. In Haystack, the
GenerativeQAPipeline uses the query encoder from RAGenerator
and the context encoder from DensePassageRetriever.

Let’s now give RAG a spin by feeding in some queries about the Amazon Fire tablet
from before. To simplify the querying, we’ll write a simple function that takes the
query and prints out the top answers:

def generate_answers(query, top_k_generator=3):
 preds = pipe.run(query=query, top_k_generator=top_k_generator,
 top_k_retriever=5, filters={"item_id":["B0074BW614"]})
 print(f"Question: {preds['query']} \n")
 for idx in range(top_k_generator):
 print(f"Answer {idx+1}: {preds['answers'][idx]['answer']}")

OK, now we’re ready to give it a test:
generate_answers(query)

Question: Is it good for reading?

Answer 1: the screen is absolutely beautiful

72 | Chapter 7: Question Answering

Answer 2: the Screen is absolutely beautiful
Answer 3: Kindle fire

This result isn’t too bad for an answer, but it does suggest that the subjective nature of
the question is confusing the generator. Let’s try with something a bit more factual:

generate_answers("What is the main drawback?")

Question: What is the main drawback?

Answer 1: the price
Answer 2: no flash support
Answer 3: the cost

This is more sensible! To get better results we could fine-tune RAG end-to-end on
SubjQA; we’ll leave this as an exercise, but if you’re interested in exploring it there are
scripts in the Transformers repository to help you get started.

Conclusion
Well, that was a whirlwind tour of QA, and you probably have many more questions
that you’d like answered (pun intended!). In this chapter, we discussed two
approaches to QA (extractive and generative) and examined two different retrieval
algorithms (BM25 and DPR). Along the way, we saw that domain adaptation can be a
simple technique to boost the performance of our QA system by a significant margin,
and we looked at a few of the most common metrics that are used for evaluating such
systems. Although we focused on closed-domain QA (i.e., a single domain of elec‐
tronic products), the techniques in this chapter can easily be generalized to the open-
domain case; we recommend reading Cloudera’s excellent Fast Forward QA series to
see what’s involved.

Deploying QA systems in the wild can be a tricky business to get right, and our expe‐
rience is that a significant part of the value comes from first providing end users with
useful search capabilities, followed by an extractive component. In this respect, the
reader can be used in novel ways beyond answering on-demand user queries. For
example, researchers at Grid Dynamics were able to use their reader to automatically
extract a set of pros and cons for each product in a client’s catalog. They also showed
that a reader can be used to extract named entities in a zero-shot fashion by creating
queries like “What kind of camera?” Given its infancy and subtle failure modes, we
recommend exploring generative QA only once the other two approaches have been
exhausted. This “hierarchy of needs” for tackling QA problems is illustrated in
Figure 7-14.

Conclusion | 73

https://oreil.ly/oZz4S
https://oreil.ly/Fd6lc
https://oreil.ly/CGLh1

17 A. Talmor et al., “MultiModalQA: Complex Question Answering over Text, Tables and Images”, (2021).
18 P. Lewis et al., “PAQ: 65 Million Probably-Asked Questions and What You Can Do with Them”, (2021); A.

Riabi et al., “Synthetic Data Augmentation for Zero-Shot Cross-Lingual Question Answering”, (2020).

Figure 7-14. #e QA hierarchy of needs

Looking ahead, one exciting research area is multimodal QA, which involves QA over
multiple modalities like text, tables, and images. As described in the MultiModalQA
benchmark,17 such systems could enable users to answer complex questions that inte‐
grate information across different modalities, like “When was the famous painting
with two touching fingers completed?” Another area with practical business applica‐
tions is QA over a knowledge graph, where the nodes of the graph correspond to real-
world entities and their relations are defined by the edges. By encoding factoids as
(subject, predicate, object) triples, one can use the graph to answer questions about a
missing element. For an example that combines transformers with knowledge graphs,
see the Haystack tutorials. One more promising direction is automatic question gener‐
ation as a way to do some form of unsupervised/weakly supervised training using
unlabeled data or data augmentation. Two recent examples include the papers on the
Probably Answered Questions (PAQ) benchmark and synthetic data augmentation
for cross-lingual settings.18

In this chapter we’ve seen that in order to successfully use QA models for real-world
use cases we need to apply a few tricks, such as implementing a fast retrieval pipeline
to make predictions in near real time. Still, applying a QA model to a handful of pre‐
selected documents can take a couple of seconds on production hardware. Although
this may not sound like much, imagine how different your experience would be if you
had to wait a few seconds to get the results of a Google search—a few seconds of wait
time can decide the fate of your transformer-powered application. In the next chapter
we’ll have a look at a few methods to accelerate model predictions further.

74 | Chapter 7: Question Answering

https://arxiv.org/abs/2104.06039
https://arxiv.org/abs/2102.07033
https://arxiv.org/abs/2010.12643
https://oreil.ly/n7lZb

CHAPTER 11

Future Directions

Throughout this book we’ve explored the powerful capabilities of transformers across
a wide range of NLP tasks. In this final chapter, we’ll shift our perspective and look at
some of the current challenges with these models and the research trends that are try‐
ing to overcome them. In the first part we explore the topic of scaling up transform‐
ers, both in terms of model and corpus size. Then we turn our attention toward
various techniques that have been proposed to make the self-attention mechanism
more efficient. Finally, we explore the emerging and exciting field of multimodal
transformers, which can model inputs across multiple domains like text, images, and
audio.

Scaling Transformers
In 2019, the researcher Richard Sutton wrote a provocative essay entitled “The Bitter
Lesson” in which he argued that:

The biggest lesson that can be read from 70 years of AI research is that general meth‐
ods that leverage computation are ultimately the most effective, and by a large mar‐
gin… . Seeking an improvement that makes a difference in the shorter term,
researchers seek to leverage their human knowledge of the domain, but the only thing
that matters in the long run is the leveraging of computation. These two need not run
counter to each other, but in practice they tend to… . And the human-knowledge
approach tends to complicate methods in ways that make them less suited to taking
advantage of general methods leveraging computation.

The essay provides several historical examples, such as playing chess or Go, where the
approach of encoding human knowledge within AI systems was ultimately outdone
by increased computation. Sutton calls this the “bitter lesson” for the AI research
field:

75

https://oreil.ly/119br
https://oreil.ly/YtD3V
https://oreil.ly/YtD3V

We have to learn the bitter lesson that building in how we think we think does not
work in the long run…. One thing that should be learned from the bitter lesson is the
great power of general purpose methods, of methods that continue to scale with
increased computation even as the available computation becomes very great. The two
methods that seem to scale arbitrarily in this way are search and learning.

There are now signs that a similar lesson is at play with transformers; while many of
the early BERT and GPT descendants focused on tweaking the architecture or pre‐
training objectives, the best-performing models in mid-2021, like GPT-3, are essen‐
tially basic scaled-up versions of the original models without many architectural
modifications. In Figure 11-1 you can see a timeline of the development of the largest
models since the release of the original Transformer architecture in 2017, which
shows that model size has increased by over four orders of magnitude in just a few
years!

Figure 11-1. Parameter counts over time for prominent Transformer architectures

This dramatic growth is motivated by empirical evidence that large language models
perform better on downstream tasks and that interesting capabilities such as zero-
shot and few-shot learning emerge in the 10- to 100-billion parameter range. How‐
ever, the number of parameters is not the only factor that affects model performance;
the amount of compute and training data must also be scaled in tandem to train these
monsters. Given that large language models like GPT-3 are estimated to cost $4.6
million to train, it is clearly desirable to be able to estimate the model’s performance
in advance. Somewhat surprisingly, the performance of language models appears to

76 | Chapter 11: Future Directions

https://oreil.ly/DUVcq
https://oreil.ly/DUVcq

1 J. Kaplan et al., “Scaling Laws for Neural Language Models”, (2020).
2 The dataset size is measured in the number of tokens, while the model size excludes parameters from the

embedding layers.

obey a power law relationship with model size and other factors that is codified in a set
of scaling laws.1 Let’s take a look at this exciting area of research.

Scaling Laws
Scaling laws allow one to empirically quantify the “bigger is better” paradigm for lan‐
guage models by studying their behavior with varying compute budget C, dataset size
D, and model size N.2 The basic idea is to chart the dependence of the cross-entropy
loss L on these three factors and determine if a relationship emerges. For autoregres‐
sive models like those in the GPT family, the resulting loss curves are shown in
Figure 11-2, where each blue curve represents the training run of a single model.

Figure 11-2. Power-law scaling of test loss versus compute budget (le$), dataset size (mid‐
dle), and model size (right) (courtesy of Jared Kaplan)

From these loss curves we can draw a few conclusions about:

#e relationship of performance and scale
Although many NLP researchers focus on architectural tweaks or hyperparame‐
ter optimization (like tuning the number of layers or attention heads) to improve
performance on a fixed set of datasets, the implication of scaling laws is that a
more productive path toward better models is to focus on increasing N, C, and D
in tandem.

Smooth power laws
The test loss L has a power law relationship with each of N, C, and D across sev‐
eral orders of magnitude (power law relationships are linear on a log-log scale).
For X = N, C, D we can express these power law relationships as L X ׂ 1/Xα,
where α is a scaling exponent that is determined by a fit to the loss curves shown

Scaling Transformers | 77

https://arxiv.org/abs/2001.08361

3 T. Henighan et al., “Scaling Laws for Autoregressive Generative Modeling”, (2020).

in Figure 11-2.3 Typical values for αX lie in the 0.05–0.095 range, and one attrac‐
tive feature of these power laws is that the early part of a loss curve can be
extrapolated to predict what the approximate loss would be if training was con‐
ducted for much longer.

Sample e%ciency
Large models are able to reach the same performance as smaller models with a
smaller number of training steps. This can be seen by comparing the regions
where a loss curve plateaus over some number of training steps, which indicates
one gets diminishing returns in performance compared to simply scaling up the
model.

Somewhat surprisingly, scaling laws have also been observed for other modalities, like
images, videos, and mathematical problem solving, as illustrated in Figure 11-3.

Figure 11-3. Power-law scaling of test loss versus compute budget across a wide range of
modalities (courtesy of Tom Henighan)

Whether power-law scaling is a universal property of transformer language models is
currently unknown. For now, we can use scaling laws as a tool to extrapolate large,
expensive models without having to explicitly train them. However, scaling isn’t quite
as easy as it sounds. Let’s now look at a few challenges that crop up when charting this
frontier.

78 | Chapter 11: Future Directions

https://arxiv.org/abs/2010.14701

4 However, recently a distributed deep learning framework has been proposed that enables smaller groups to
pool their computational resources and pretrain models in a collaborative fashion. See M. Diskin et al., “Dis‐
tributed Deep Learning in Open Collaborations”, (2021).

Challenges with Scaling
While scaling up sounds simple in theory (“just add more layers!”), in practice there
are many difficulties. Here are a few of the biggest challenges you’re likely to
encounter when scaling language models:

Infrastructure
Provisioning and managing infrastructure that potentially spans hundreds or
thousands of nodes with as many GPUs is not for the faint-hearted. Are the
required number of nodes available? Is communication between nodes a bottle‐
neck? Tackling these issues requires a very different skill set than that found in
most data science teams, and typically involves specialized engineers familiar
with running large-scale, distributed experiments.

Cost
Most ML practitioners have experienced the feeling of waking up in the middle
of the night in a cold sweat, remembering they forgot to shut down that fancy
GPU on the cloud. This feeling intensifies when running large-scale experiments,
and most companies cannot afford the teams and resources necessary to train
models at the largest scales. Training a single GPT-3-sized model can cost several
million dollars, which is not the kind of pocket change that many companies
have lying around.4

Dataset curation
A model is only as good as the data it is trained on. Training large models
requires large, high-quality datasets. When using terabytes of text data it
becomes harder to make sure the dataset contains high-quality text, and even
preprocessing becomes challenging. Furthermore, one needs to ensure that there
is a way to control biases like sexism and racism that these language models can
acquire when trained on large-scale webtext corpora. Another type of considera‐
tion revolves around licensing issues with the training data and personal infor‐
mation that can be embedded in large text datasets.

Model evaluation
Once the model is trained, the challenges don’t stop. Evaluating the model on
downstream tasks again requires time and resources. In addition, you’ll want to
probe the model for biased and toxic generations, even if you are confident that
you created a clean dataset. These steps take time and need to be carried out
thoroughly to minimize the risks of adverse effects later on.

Scaling Transformers | 79

https://arxiv.org/abs/2106.10207
https://arxiv.org/abs/2106.10207

Deployment
Finally, serving large language models also poses a significant challenge. In Chap‐
ter 8 we looked at a few approaches, such as distillation, pruning, and quantiza‐
tion, to help with these issues. However, this may not be enough if you are
starting with a model that is hundreds of gigabytes in size. Hosted services such
as the OpenAI API or Hugging Face’s Accelerated Inference API are designed to
help companies that cannot or do not want to deal with these deployment
challenges.

This is by no means an exhaustive list, but it should give you an idea of the kinds of
considerations and challenges that go hand in hand with scaling language models to
ever larger sizes. While most of these efforts are centralized around a few institutions
that have the resources and know-how to push the boundaries, there are currently
two community-led projects that aim to produce and probe large language models in
the open:

BigScience
This is a one-year-long research workshop that runs from 2021 to 2022 and is
focused on large language models. The workshop aims to foster discussions and
reflections around the research questions surrounding these models (capabilities,
limitations, potential improvements, bias, ethics, environmental impact, role in
the general AI/cognitive research landscape) as well as the challenges around cre‐
ating and sharing such models and datasets for research purposes and among the
research community. The collaborative tasks involve creating, sharing, and evalu‐
ating a large multilingual dataset and a large language model. An unusually large
compute budget was allocated for these collaborative tasks (several million GPU
hours on several thousands GPUs). If successful, this workshop will run again in
the future, focusing on involving an updated or different set of collaborative
tasks. If you want to join the effort, you can find more information at the proj‐
ect’s website.

EleutherAI
This is a decentralized collective of volunteer researchers, engineers, and devel‐
opers focused on AI alignment, scaling, and open source AI research. One of its
aims is to train and open-source a GPT-3-sized model, and the group has already
released some impressive models like GPT-Neo and GPT-J, which is a 6-billion-
parameter model and currently the best-performing publicly available trans‐
former in terms of zero-shot performance. You can find more information at
EleutherAI’s website.

Now that we’ve explored how to scale transformers across compute, model size, and
dataset size, let’s examine another active area of research: making self-attention more
efficient.

80 | Chapter 11: Future Directions

https://beta.openai.com
https://oreil.ly/E4q3b
https://oreil.ly/13xfb
https://oreil.ly/13xfb
https://oreil.ly/ZVGaz
https://oreil.ly/Kup60
https://eleuther.ai

5 Although standard implementations of self-attention have O n2 time and memory complexity, a recent paper
by Google researchers shows that the memory complexity can be reduced to O log n via a simple reordering
of the operations.

6 Yi Tay et al., “Efficient Transformers: A Survey”, (2020).

Attention Please!
We’ve seen throughout this book that the self-attention mechanism plays a central
role in the architecture of transformers; after all, the original Transformer paper is
called “Attention Is All You Need”! However, there is a key challenge associated with
self-attention: since the weights are generated from pairwise comparisons of all the
tokens in a sequence, this layer becomes a computational bottleneck when trying to
process long documents or apply transformers to domains like speech processing or
computer vision. In terms of time and memory complexity, the self-attention layer of
the Transformer architecture naively scales like ᇭ n2 , where n is the length of the
sequence.5

As a result, much of the recent research on transformers has focused on making self-
attention more efficient. The research directions are broadly clustered in Figure 11-4.

Figure 11-4. A summarization of research directions to make attention more e%cient
(courtesy of Yi Tay et al.)6

Scaling Transformers | 81

https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2112.05682
https://arxiv.org/abs/2009.06732

7 T. Lin et al., “A Survey of Transformers”, (2021).

A common pattern is to make attention more efficient by introducing sparsity into
the attention mechanism or by applying kernels to the attention matrix. Let’s take a
quick look at some of the most popular approaches to make self-attention more effi‐
cient, starting with sparsity.

Sparse Attention
One way to reduce the number of computations that are performed in the self-
attention layer is to simply limit the number of query-key pairs that are generated
according to some predefined pattern. There have been many sparsity patterns
explored in the literature, but most of them can be decomposed into a handful of
“atomic” patterns illustrated in Figure 11-5.

Figure 11-5. Common atomic sparse attention patterns for self-attention: a colored square
means the attention score is calculated, while a blank square means the score is dis‐
carded (courtesy of Tianyang Lin)

We can describe these patterns as follows:7

Global attention
Defines a few special tokens in the sequence that are allowed to attend to all other
tokens

Band attention
Computes attention over a diagonal band

Dilated attention
Skips some query-key pairs by using a dilated window with gaps

Random attention
Randomly samples a few keys for each query to compute attention scores

82 | Chapter 11: Future Directions

https://arxiv.org/abs/2106.04554

Block local attention
Divides the sequence into blocks and restricts attention within these blocks

In practice, most transformer models with sparse attention use a mix of the atomic
sparsity patterns shown in Figure 11-5 to generate the final attention matrix. As illus‐
trated in Figure 11-6, models like Longformer use a mix of global and band attention,
while BigBird adds random attention to the mix. Introducing sparsity into the atten‐
tion matrix enables these models to process much longer sequences; in the case of
Longformer and BigBird the maximum sequence length is 4,096 tokens, which is 8
times larger than BERT!

Figure 11-6. Sparse attention patterns for recent transformer models (courtesy of
Tianyang Lin)

It is also possible to learn the sparsity pattern in a data-driven man‐
ner. The basic idea behind such approaches is to cluster the tokens
into chunks. For example, Reformer uses a hash function to cluster
similar tokens together.

Now that we’ve seen how sparsity can reduce the complexity of self-attention, let’s
take a look at another popular approach based on changing the operations directly.

Linearized Attention
An alternative way to make self-attention more efficient is to change the order of
operations that are involved in computing the attention scores. Recall that to compute
the self-attention scores of the queries and keys we need a similarity function, which
for the transformer is just a simple dot product. However, for a general similarity
function sim qi, kj we can express the attention outputs as the following equation:

yi = ∑
j

sim Qi, K j
∑k sim Qi, Kk

V j

Scaling Transformers | 83

https://oreil.ly/F7xCY
https://oreil.ly/yFPyj
https://oreil.ly/yIVvX

8 A. Katharopoulos et al., “Transformers Are RNNs: Fast Autoregressive Transformers with Linear Attention”,
(2020); K. Choromanski et al., “Rethinking Attention with Performers”, (2020).

The trick behind linearized attention mechanisms is to express the similarity function
as a kernel function that decomposes the operation into two pieces:

sim Qj, K j = φ Qi
Tφ K j

where φ is typically a high-dimensional feature map. Since φ Qi is independent of j
and k, we can pull it under the sums to write the attention outputs as follows:

yi =
φ Qi

T∑ j φ K j V j
T

φ Qi
T∑k φ Kk

By first computing ∑ j φ K j V j
T and ∑k φ Kk , we can effectively linearize the space and

time complexity of self-attention! The comparison between the two approaches is
illustrated in Figure 11-7. Popular models that implement linearized self-attention
include Linear Transformer and Performer.8

Figure 11-7. Complexity di"erence between standard self-attention and linearized self-
attention (courtesy of Tianyang Lin)

In this section we’ve seen how Transformer architectures in general and attention in
particular can be scaled up to achieve even better performance on a wide range of
tasks. In the next section we’ll have a look at how transformers are branching out of
NLP into other domains such as audio and computer vision.

Going Beyond Text
Using text to train language models has been the driving force behind the success of
transformer language models, in combination with transfer learning. On the one
hand, text is abundant and enables self-supervised training of large models. On the
other hand, textual tasks such as classification and question answering are common,

84 | Chapter 11: Future Directions

https://arxiv.org/abs/2006.16236
https://arxiv.org/abs/2009.14794

9 J. Gordon and B. Van Durme, “Reporting Bias and Knowledge Extraction”, (2013).
10 M. Chen et al., “Generative Pretraining from Pixels,” Proceedings of the 37th International Conference on

Machine Learning 119 (2020):1691–1703, https://proceedings.mlr.press/v119/chen20s.html.

and developing effective strategies for them allows us to address a wide range of real-
world problems.

However, there are limits to this approach, including:

Human reporting bias
The frequencies of events in text may not represent their true frequencies.9 A
model solely trained on text from the internet might have a very distorted image
of the world.

Common sense
Common sense is a fundamental quality of human reasoning, but is rarely writ‐
ten down. As such, language models trained on text might know many facts
about the world, but lack basic common-sense reasoning.

Facts
A probabilistic language model cannot store facts in a reliable way and can pro‐
duce text that is factually wrong. Similarly, such models can detect named enti‐
ties, but have no direct way to access information about them.

Modality
Language models have no way to connect to other modalities that could address
the previous points, such as audio or visual signals or tabular data.

So, if we could solve the modality limitations we could potentially address some of
the others as well. Recently there has been a lot of progress in pushing transformers
to new modalities, and even building multimodal models. In this section we’ll high‐
light a few of these advances.

Vision
Vision has been the stronghold of convolutional neural networks (CNNs) since they
kickstarted the deep learning revolution. More recently, transformers have begun to
be applied to this domain and to achieve efficiency similar to or better than CNNs.
Let’s have a look at a few examples.

iGPT
Inspired by the success of the GPT family of models with text, iGPT (short for image
GPT) applies the same methods to images.10 By viewing images as sequences of pixels,
iGPT uses the GPT architecture and autoregressive pretraining objective to predict

Going Beyond Text | 85

https://openreview.net/pdf?id=AzxEzvpdE3Wcy
https://proceedings.mlr.press/v119/chen20s.html

11 A. Dosovitskiy et al., “An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale”, (2020).

the next pixel values. Pretraining on large image datasets enables iGPT to “autocom‐
plete” partial images, as displayed in Figure 11-8. It also achieves performant results on
classification tasks when a classification head is added to the model.

Figure 11-8. Examples of image completions with iGPT (courtesy of Mark Chen)

ViT
We saw that iGPT follows closely the GPT-style architecture and pretraining proce‐
dure. Vision Transformer (ViT)11 is a BERT-style take on transformers for vision, as
illustrated in Figure 11-9. First the image is split into smaller patches, and each of these
patches is embedded with a linear projection. The results strongly resemble the token
embeddings in BERT, and what follows is virtually identical. The patch embeddings
are combined with position embeddings and then fed through an ordinary trans‐
former encoder. During pretraining some of the patches are masked or distorted, and
the objective is to predict the average color of the masked patch.

86 | Chapter 11: Future Directions

https://arxiv.org/abs/2010.11929

Figure 11-9. #e ViT architecture (courtesy of Alexey Dosovitskiy et al.)

Although this approach did not produce better results when pretrained on the stan‐
dard ImageNet dataset, it scaled significantly better than CNNs on larger datasets.

ViT is integrated in Transformers, and using it is very similar to the NLP pipelines
that we’ve used throughout this book. Let’s start by loading the image of a rather
famous dog:

from PIL import Image
import matplotlib.pyplot as plt

image = Image.open("images/doge.jpg")
plt.imshow(image)
plt.axis("off")
plt.show()

Going Beyond Text | 87

12 G. Bertasius, H. Wang, and L. Torresani, “Is Space-Time Attention All You Need for Video Understanding?”,
(2021).

To load a ViT model, we just need to specify the image-classification pipeline,
and then we feed in the image to extract the predicted classes:

import pandas as pd
from transformers import pipeline

image_classifier = pipeline("image-classification")
preds = image_classifier(image)
preds_df = pd.DataFrame(preds)
preds_df

score label

0 0.643599 Eskimo dog, husky

1 0.207407 Siberian husky

2 0.060160 dingo, warrigal, warragal, Canis dingo

3 0.035359 Norwegian elkhound, elkhound

4 0.012927 malamute, malemute, Alaskan malamute

Great, the predicted class seems to match the image!

A natural extension of image models is video models. In addition to the spatial
dimensions, videos come with a temporal dimension. This makes the task more chal‐
lenging as the volume of data gets much bigger and one needs to deal with the extra
dimension. Models such as TimeSformer introduce a spatial and temporal attention
mechanism to account for both.12 In the future, such models can help build tools for a
wide range of tasks such as classification or annotation of video sequences.

88 | Chapter 11: Future Directions

https://arxiv.org/abs/2102.05095

13 J. Herzig et al., “TAPAS: Weakly Supervised Table Parsing via Pre-Training”, (2020).

Tables
A lot of data, such as customer data within a company, is stored in structured data‐
bases instead of as raw text. We saw in Chapter 7 that with question answering mod‐
els we can query text with a question in natural text. Wouldn’t it be nice if we could
do the same with tables, as shown in Figure 11-10?

Figure 11-10. Question answering over a table (courtesy of Jonathan Herzig)

TAPAS (short for Table Parser)13 to the rescue! This model applies the Transformer
architecture to tables by combining the tabular information with the query, as illus‐
trated in Figure 11-11.

Figure 11-11. Architecture of TAPAS (courtesy of Jonathan Herzig)

Let’s look at an example of how TAPAS works in practice. We have created a fictitious
version of this book’s table of contents. It contains the chapter number, the name of
the chapter, as well as the starting and ending pages of the chapters:

book_data = [
 {"chapter": 0, "name": "Introduction", "start_page": 1, "end_page": 11},
 {"chapter": 1, "name": "Text classification", "start_page": 12,
 "end_page": 48},
 {"chapter": 2, "name": "Named Entity Recognition", "start_page": 49,
 "end_page": 73},
 {"chapter": 3, "name": "Question Answering", "start_page": 74,

Going Beyond Text | 89

https://arxiv.org/abs/2004.02349

 "end_page": 120},
 {"chapter": 4, "name": "Summarization", "start_page": 121,
 "end_page": 140},
 {"chapter": 5, "name": "Conclusion", "start_page": 141,
 "end_page": 144}
]

We can also easily add the number of pages each chapter has with the existing fields.
In order to play nicely with the TAPAS model, we need to make sure that all columns
are of type str:

table = pd.DataFrame(book_data)
table['number_of_pages'] = table['end_page']-table['start_page']
table = table.astype(str)
table

chapter name start_page end_page number_of_pages

0 0 Introduction 1 11 10

1 1 Text classi!cation 12 48 36

2 2 Named Entity Recognition 49 73 24

3 3 Question Answering 74 120 46

4 4 Summarization 121 140 19

5 5 Conclusion 141 144 3

By now you should know the drill. We first load the table-question-answering
pipeline:

table_qa = pipeline("table-question-answering")

and then pass some queries to extract the answers:
table_qa = pipeline("table-question-answering")
queries = ["What's the topic in chapter 4?",
 "What is the total number of pages?",
 "On which page does the chapter about question-answering start?",
 "How many chapters have more than 20 pages?"]
preds = table_qa(table, queries)

These predictions store the type of table operation in an aggregator field, along with
the answer. Let’s see how well TAPAS fared on our questions:

for query, pred in zip(queries, preds):
 print(query)
 if pred["aggregator"] == "NONE":
 print("Predicted answer: " + pred["answer"])
 else:
 print("Predicted answer: " + pred["answer"])
 print('='*50)

90 | Chapter 11: Future Directions

What's the topic in chapter 4?
Predicted answer: Summarization
==
What is the total number of pages?
Predicted answer: SUM > 10, 36, 24, 46, 19, 3
==
On which page does the chapter about question-answering start?
Predicted answer: AVERAGE > 74
==
How many chapters have more than 20 pages?
Predicted answer: COUNT > 1, 2, 3
==

For the first chapter, the model predicted exactly one cell with no aggregation. If we
look at the table, we see that the answer is in fact correct. In the next example the
model predicted all the cells containing the number of pages in combination with the
sum aggregator, which again is the correct way of calculating the total number of
pages. The answer to question three is also correct; the average aggregation is not
necessary in that case, but it doesn’t make a difference. Finally, we have a question
that is a little bit more complex. To determine how many chapters have more than 20
pages we first need to find out which chapters satisfy that criterion and then count
them. It seem that TAPAS again got it right and correctly determined that chapters 1,
2, and 3 have more than 20 pages, and added a count aggregator to the cells.

The kinds of questions we asked can also be solved with a few simple Pandas com‐
mands; however, the ability to ask questions in natural language instead of Python
code allows a much wider audience to query the data to answer specific questions.
Imagine such tools in the hands of business analysts or managers who are able verify
their own hypotheses about the data!

Multimodal Transformers
So far we’ve looked at extending transformers to a single new modality. TAPAS is
arguably multimodal since it combines text and tables, but the table is also treated as
text. In this section we examine transformers that combine two modalities at once:
audio plus text and vision plus text.

Speech-to-Text
Although being able to use text to interface with a computer is a huge step forward,
using spoken language is an even more natural way for us to communicate. You can
see this trend in industry, where applications such as Siri and Alexa are on the rise
and becoming progressively more useful. Also, for a large fraction of the population,
writing and reading are more challenging than speaking. So, being able to process
and understand audio is not only convenient, but can help many people access more
information. A common task in this domain is automatic speech recognition (ASR),

Multimodal Transformers | 91

14 A. Baevski et al., “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations”, (2020).

which converts spoken words to text and enables voice technologies like Siri to
answer questions like “What is the weather like today?”

The wav2vec 2.0 family of models are one of the most recent developments in ASR:
they use a transformer layer in combination with a CNN, as illustrated in
Figure 11-12.14 By leveraging unlabeled data during pretraining, these models achieve
competitive results with only a few minutes of labeled data.

Figure 11-12. Architecture of wav2vec 2.0 (courtesy of Alexei Baevski)

The wav2vec 2.0 models are integrated in Transformers, and you won’t be sur‐
prised to learn that loading and using them follows the familiar steps that we have
seen throughout this book. Let’s load a pretrained model that was trained on 960
hours of speech audio:

asr = pipeline("automatic-speech-recognition")

To apply this model to some audio files we’ll use the ASR subset of the SUPERB data‐
set, which is the same dataset the model was pretrained on. Since the dataset is quite
large, we’ll just load one example for our demo purposes:

from datasets import load_dataset

ds = load_dataset("superb", "asr", split="validation[:1]")
print(ds[0])

{'chapter_id': 128104, 'speaker_id': 1272, 'file': '~/.cache/huggingf
ace/datasets/downloads/extracted/e4e70a454363bec1c1a8ce336139866a39442114d86a433

92 | Chapter 11: Future Directions

https://arxiv.org/abs/2006.11477
https://oreil.ly/tPpC7
https://oreil.ly/iBAK8
https://oreil.ly/iBAK8

15 A. Baevski et al., “Unsupervised Speech Recognition”, (2021).

6014acd4b1ed55e55/LibriSpeech/dev-clean/1272/128104/1272-128104-0000.flac',
'id': '1272-128104-0000', 'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE
CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL'}

Here we can see that the audio in the file column is stored in the FLAC coding for‐
mat, while the expected transcription is given by the text column. To convert the
audio to an array of floats, we can use the SoundFile library to read each file in our
dataset with map():

import soundfile as sf

def map_to_array(batch):
 speech, _ = sf.read(batch["file"])
 batch["speech"] = speech
 return batch

ds = ds.map(map_to_array)

If you are using a Jupyter notebook you can easily play the sound files with the fol‐
lowing IPython widgets:

from IPython.display import Audio

display(Audio(ds[0]['speech'], rate=16000))

Finally, we can pass the inputs to the pipeline and inspect the prediction:
pred = asr(ds[0]["speech"])
print(pred)

{'text': 'MISTER QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO
WELCOME HIS GOSPEL'}

This transcription seems to be correct. We can see that some punctuation is missing,
but this is hard to get from audio alone and could be added in a postprocessing step.
With only a handful of lines of code we can build ourselves a state-of-the-art speech-
to-text application!

Building a model for a new language still requires a minimum amount of labeled
data, which can be challenging to obtain, especially for low-resource languages. Soon
after the release of wav2vec 2.0, a paper describing a method named wav2vec-U was
published.15 In this work, a combination of clever clustering and GAN training is
used to build a speech-to-text model using only independent unlabeled speech and
unlabeled text data. This process is visualized in detail in Figure 11-13. No aligned
speech and text data is required at all, which enables the training of highly perform‐
ant speech-to-text models for a much larger spectrum of languages.

Multimodal Transformers | 93

https://arxiv.org/abs/2105.11084
https://oreil.ly/eo106

16 Y. Goyal et al., “Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question
Answering”, (2016).

Figure 11-13. Training scheme for wav2vec-U (courtesy of Alexsei Baevski)

Great, so transformers can now “read” text and “hear” audio—can they also “see”?
The answer is yes, and this is one of the current hot research frontiers in the field.

Vision and Text
Vision and text are another natural pair of modalities to combine since we frequently
use language to communicate and reason about the contents of images and videos. In
addition to the vision transformers, there have been several developments in the
direction of combining visual and textual information. In this section we will look at
four examples of models combining vision and text: VisualQA, LayoutLM, DALL·E,
and CLIP.

VQA
In Chapter 7 we explored how we can use transformer models to extract answers to
text-based questions. This can be done ad hoc to extract information from texts or
offline, where the question answering model is used to extract structured information
from a set of documents. There have been several efforts to expand this approach to
vision with datasets such as VQA,16 shown in Figure 11-14.

94 | Chapter 11: Future Directions

https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1612.00837

17 H. Tan and M. Bansal, “LXMERT: Learning Cross-Modality Encoder Representations from Transformers”,
(2019); L.H. Li et al., “VisualBERT: A Simple and Performant Baseline for Vision and Language”, (2019).

Figure 11-14. Example of a visual question answering task from the VQA dataset (cour‐
tesy of Yash Goyal)

Models such as LXMERT and VisualBERT use vision models like ResNets to extract
features from the pictures and then use transformer encoders to combine them with
the natural questions and predict an answer.17

LayoutLM
Analyzing scanned business documents like receipts, invoices, or reports is another
area where extracting visual and layout information can be a useful way to recognize
text fields of interest. Here the LayoutLM family of models are the current state of the
art. They use an enhanced Transformer architecture that receives three modalities as
input: text, image, and layout. Accordingly, as shown in Figure 11-15, there are embed‐
ding layers associated with each modality, a spatially aware self-attention mechanism,
and a mix of image and text/image pretraining objectives to align the different
modalities. By pretraining on millions of scanned documents, LayoutLM models are
able to transfer to various downstream tasks in a manner similar to BERT for NLP.

Multimodal Transformers | 95

https://arxiv.org/abs/1908.07490
https://arxiv.org/abs/1908.03557
https://oreil.ly/uQc5t

18 A. Ramesh et al., “Zero-Shot Text-to-Image Generation”, (2021).

Figure 11-15. #e model architecture and pretraining strategies for LayoutLMv2 (courtesy
of Yang Xu)

DALL·E
A model that combines vision and text for generative tasks is DALL·E.18 It uses the
GPT architecture and autoregressive modeling to generate images from text. Inspired
by iGPT, it regards the words and pixels as one sequence of tokens and is thus able to
continue generating an image from a text prompt, as shown in Figure 11-16.

96 | Chapter 11: Future Directions

https://arxiv.org/abs/2102.12092

19 A. Radford et al., “Learning Transferable Visual Models from Natural Language Supervision”, (2021).

Figure 11-16. Generation examples with DALL·E (courtesy of Aditya Ramesh)

CLIP
Finally, let’s have a look at CLIP,19 which also combines text and vision but is designed
for supervised tasks. Its creators constructed a dataset with 400 million image/caption
pairs and used contrastive learning to pretrain the model. The CLIP architecture con‐
sists of a text and an image encoder (both transformers) that create embeddings of
the captions and images. A batch of images with captions is sampled, and the contras‐
tive objective is to maximize the similarity of the embeddings (as measured by the dot
product) of the corresponding pair while minimizing the similarity of the rest, as
illustrated in Figure 11-17.

In order to use the pretrained model for classification the possible classes are embed‐
ded with the text encoder, similar to how we used the zero-shot pipeline. Then the
embeddings of all the classes are compared to the image embedding that we want to
classify, and the class with the highest similarity is chosen.

Multimodal Transformers | 97

https://arxiv.org/abs/2103.00020

Figure 11-17. Architecture of CLIP (courtesy of Alec Radford)

The zero-shot image classification performance of CLIP is remarkable and competi‐
tive with fully supervised trained vision models, while being more flexible with
regard to new classes. CLIP is also fully integrated in Transformers, so we can try it
out. For image-to-text tasks, we instantiate a processor that consists of a feature extrac‐
tor and a tokenizer. The role of the feature extractor is to convert the image into a

98 | Chapter 11: Future Directions

form suitable for the model, while the tokenizer is responsible for decoding the mod‐
el’s predictions into text:

from transformers import CLIPProcessor, CLIPModel

clip_ckpt = "openai/clip-vit-base-patch32"
model = CLIPModel.from_pretrained(clip_ckpt)
processor = CLIPProcessor.from_pretrained(clip_ckpt)

Then we need a fitting image to try it out. What would be better suited than a picture
of Optimus Prime?

image = Image.open("images/optimusprime.jpg")
plt.imshow(image)
plt.axis("off")
plt.show()

Next, we set up the texts to compare the image against and pass it through the model:
import torch

texts = ["a photo of a transformer", "a photo of a robot", "a photo of agi"]
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
with torch.no_grad():
 outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
probs

tensor([[0.9557, 0.0413, 0.0031]])

Well, it almost got the right answer (a photo of AGI of course). Jokes aside, CLIP
makes image classification very flexible by allowing us to define classes through text
instead of having the classes hardcoded in the model architecture. This concludes our
tour of multimodal transformer models, but we hope we’ve whetted your appetite.

Multimodal Transformers | 99

Where to from Here?
Well that’s the end of the ride; thanks for joining us on this journey through the trans‐
formers landscape! Throughout this book we’ve explored how transformers can
address a wide range of tasks and achieve state-of-the-art results. In this chapter we’ve
seen how the current generation of models are being pushed to their limits with scal‐
ing and how they are also branching out into new domains and modalities.

If you want to reinforce the concepts and skills that you’ve learned in this book, here
are a few ideas for where to go from here:

Join a Hugging Face community event
Hugging Face hosts short sprints focused on improving the libraries in the eco‐
system, and these events are a great way to meet the community and get a taste
for open source software development. So far there have been sprints on adding
600+ datasets to Datasets, fine-tuning 300+ ASR models in various languages,
and implementing hundreds of projects in JAX/Flax.

Build your own project
One very effective way to test your knowledge in machine learning is to build a
project to solve a problem that interests you. You could reimplement a trans‐
former paper, or apply transformers to a novel domain.

Contribute a model to Transformers
If you’re looking for something more advanced, then contributing a newly pub‐
lished architecture to Transformers is a great way to dive into the nuts and
bolts of the library. There is a detailed guide to help you get started in the
Transformers documentation.

Blog about what you’ve learned
Teaching others what you’ve learned is a powerful test of your own knowledge,
and in a sense this was one of the driving motivations behind us writing this
book! There are great tools to help you get started with technical blogging; we
recommend fastpages as you can easily use Jupyter notebooks for everything.

100 | Chapter 11: Future Directions

https://oreil.ly/3f4wZ
https://oreil.ly/f0L9u

About the Authors
Lewis Tunstall is a machine learning engineer at Hugging Face. He has built machine
learning applications for startups and enterprises in the domains of NLP, topological
data analysis, and time series. Lewis has a PhD in theoretical physics and has held
research positions in Australia, the USA, and Switzerland. His current work focuses
on developing tools for the NLP community and teaching people to use them
effectively.

Leandro von Werra is a machine learning engineer in the open source team at Hug‐
ging Face. He has several years of industry experience bringing NLP projects to pro‐
duction by working across the whole machine learning stack, and is the creator of a
popular Python library called TRL, which combines transformers with reinforcement
learning.

!omas Wolf is chief science officer at and cofounder of Hugging Face. His team is
on a mission to catalyze and democratize NLP research. Prior to cofounding Hugging
Face, Thomas earned a PhD in physics and later a law degree. He has worked as a
physics researcher and a European patent attorney.

Colophon
The bird on the cover of Natural Language Processing with Transformers is a coconut
lorikeet (Trichoglossus haematodus), a relative of parakeets and parrots. It is also
known as the green-naped lorikeet and is native to Oceania.

The plumage of coconut lorikeets blends into their colorful tropical and subtropical
surroundings; their green nape meets a yellow collar beneath a deep dark blue head,
which ends in an orange-red bill. Their eyes are orange and the breast feathers are
red. Coconut lorikeets have one of the longest, pointed tails of the seven species of
lorikeet, which is green from above and yellow underneath. These birds measure 10
to 12 inches long and weigh 3.8 to 4.8 ounces.

Coconut lorikeets have one monogamous partner and lay two matte white eggs at a
time. They build nests over 80 feet high in eucalyptus trees and live 15 to 20 years in
the wild. This species suffers from habitat loss and capture for the pet trade. Many of
the animals on O’Reilly’s covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from English Cyclopedia. The cover fonts are Gilroy Semibold and Guardian Sans.
The text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed;
and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Deepset.ai
	Copyright
	Table of Contents
	Chapter 3. Transformer Anatomy
	The Transformer Architecture
	The Encoder
	Self-Attention
	The Feed-Forward Layer
	Adding Layer Normalization
	Positional Embeddings
	Adding a Classification Head

	The Decoder
	Meet the Transformers
	The Transformer Tree of Life
	The Encoder Branch
	The Decoder Branch
	The Encoder-Decoder Branch

	Conclusion

	Chapter 7. Question Answering
	Building a Review-Based QA System
	The Dataset
	Extracting Answers from Text
	Using Haystack to Build a QA Pipeline

	Improving Our QA Pipeline
	Evaluating the Retriever
	Evaluating the Reader
	Domain Adaptation
	Evaluating the Whole QA Pipeline

	Going Beyond Extractive QA
	Conclusion

	Chapter 11. Future Directions
	Scaling Transformers
	Scaling Laws
	Challenges with Scaling
	Attention Please!
	Sparse Attention
	Linearized Attention

	Going Beyond Text
	Vision
	Tables

	Multimodal Transformers
	Speech-to-Text
	Vision and Text

	Where to from Here?

	About the Authors
	Colophon

